

connected via USB. Both variants require different handling of compiling and

uploading the firmware. The USB connection requires firmware with bootloader

support whereas the GPIO version does not.

For USB connection a bootloader has to be installed initally. This requires STlink

connection. After that is done the MMDVM_HS firmware upgrade can be done via the

USB connection. The STlink connection can be used as fallback if wrongly configured

firmware was installed for example.

If you want to use the device via USB port you have to install a bootloader and build

the firmware with bootloader support. As the raw device cannot be used with USB you

have to use a USB-serial adapter or STlink device. Using STlink this can be done as

follows:

Install the firmware with bootloader support for USB connection

user@host:/opt/MMDVM_HS$ make stlink-bl

././STM32F10X_Lib/utils/linux64/st-flash write ./STM32F10X_Lib/utils/

bootloader/generic_boot20_pc13.bin 0x8000000

2018-03-02T10:01:04 INFO src/usb.c: -- exit_dfu_mode

2018-03-02T10:01:04 INFO src/common.c: Loading device parameters....

2018-03-02T10:01:04 INFO src/common.c: Device connected is: F1 Medium-

density device, id 0x20036410

2018-03-02T10:01:04 INFO src/common.c: SRAM size: 0x5000 bytes (20

KiB), Flash: 0x10000 bytes (64 KiB) in pages of 1024 bytes

2018-03-02T10:01:04 INFO src/common.c: Attempting to write 7160

(0x1bf8) bytes to stm32 address: 134217728 (0x8000000)

Flash page at addr: 0x08001800 erased

2018-03-02T10:01:04 INFO src/common.c: Finished erasing 7 pages of

1024 (0x400) bytes

2018-03-02T10:01:04 INFO src/common.c: Starting Flash write for VL/F0/

F3 core id

2018-03-02T10:01:04 INFO src/common.c: Successfully loaded flash

loader in sram

 6/6 pages written

2018-03-02T10:01:05 INFO src/common.c: Starting verification of write

complete

2018-03-02T10:01:05 INFO src/common.c: Flash written and verified!

jolly good!

././STM32F10X_Lib/utils/linux64/st-flash write bin/mmdvm_f1bl.bin

0x8002000

2018-03-02T10:01:05 INFO src/common.c: Loading device parameters....

2018-03-02T10:01:05 INFO src/common.c: Device connected is: F1 Medium-

density device, id 0x20036410

2018-03-02T10:01:05 INFO src/common.c: SRAM size: 0x5000 bytes (20

KiB), Flash: 0x10000 bytes (64 KiB) in pages of 1024 bytes

2018-03-02T10:01:05 INFO src/common.c: Attempting to write 55016

(0xd6e8) bytes to stm32 address: 134225920 (0x8002000)

Flash page at addr: 0x0800f400 erased

2018-03-02T10:01:07 INFO src/common.c: Finished erasing 54 pages of

1024 (0x400) bytes

2018-03-02T10:01:07 INFO src/common.c: Starting Flash write for VL/F0/

F3 core id

2018-03-02T10:01:07 INFO src/common.c: Successfully loaded flash

GitHub - phl0/MMDVM_HS_Dual_Hat: Duplex variant of... https://github.com/phl0/MMDVM_HS_Dual_Hat

4 sur 8 08/10/2024 11:31

The device should now be usable as /dev/ttyACMx.

If you want to update the MMDVM_HS firmware itself later on via USB you can use the

dfu upload method. The settings in Config.h are:

or #define ADF7021_12_2880

for boards with 12.288MHz TCXO.

Optionally:

Compile the firmware with "make bl" and then:

2018-03-02T10:01:07 INFO src/common.c: Successfully loaded flash

loader in sram

 53/53 pages written

2018-03-02T10:01:12 INFO src/common.c: Starting verification of write

complete

2018-03-02T10:01:13 INFO src/common.c: Flash written and verified!

jolly good!

#define MMDVM_HS_DUAL_HAT_REV10

#define ENABLE_ADF7021

#define DUPLEX

#define ADF7021_14_7456

#define STM32_USB_HOST

#define ENABLE_SCAN_MODE

#define SEND_RSSI_DATA

#define SERIAL_REPEATER

user@host:/opt/MMDVM_HS$ sudo make dfu devser=/dev/ttyACM3

././STM32F10X_Lib/utils/linux64/upload-reset /dev/ttyACM3 750

././STM32F10X_Lib/utils/linux64/dfu-util -D bin/mmdvm_f1bl.bin -d

1eaf:0003 -a 2 -R -R

dfu-util 0.7

Copyright 2005-2008 Weston Schmidt, Harald Welte and OpenMoko Inc.

Copyright 2010-2012 Tormod Volden and Stefan Schmidt

This program is Free Software and has ABSOLUTELY NO WARRANTY

Please report bugs to dfu-util@lists.gnumonks.org

Filter on vendor = 0x1eaf product = 0x0003

Opening DFU capable USB device... ID 1eaf:0003

Run-time device DFU version 0110

Found DFU: [1eaf:0003] devnum=0, cfg=1, intf=0, alt=2,

name="STM32duino bootloader v1.0 Upload to Flash 0x8002000"

Claiming USB DFU Interface...

Setting Alternate Setting #2 .

GitHub - phl0/MMDVM_HS_Dual_Hat: Duplex variant of... https://github.com/phl0/MMDVM_HS_Dual_Hat

5 sur 8 08/10/2024 11:31

For specific details about the firmware installation, check these instructions. The

process is similar to the installation on the ZumSpot Pi. You can make use of the

preconfigured scripts in MMDVM_HS. Editing Config.h by hand requires these settings:

Enable the following settings in Config.h:

Optionally:

And for 12.288MHz TCXO equipped boards

instead of the 14_7456 option.

Build the firmware:

Make sure the two BOOT jumpers are set as follows:

Setting Alternate Setting #2 ...

Determining device status: state = dfuIDLE, status = 0

dfuIDLE, continuing

DFU mode device DFU version 0110

Device returned transfer size 1024

No valid DFU suffix signature

Warning: File has no DFU suffix

bytes_per_hash=1100

Copying data from PC to DFU device

Starting download:

[##] finished!

state(8) = dfuMANIFEST-WAIT-RESET, status(0) = No error condition is

present

Done!

Resetting USB to switch back to runtime mode

Compile and upload manually for GPIO connection

#define MMDVM_HS_DUAL_HAT_REV10

#define ENABLE_ADF7021

#define DUPLEX

#define ADF7021_14_7456

#define STM32_USART1_HOST

#define ENABLE_SCAN_MODE

#define SEND_RSSI_DATA

#define SERIAL_REPEATER

#define ADF7021_12_2880

make

BOOT0: complete ed

GitHub - phl0/MMDVM_HS_Dual_Hat: Duplex variant of... https://github.com/phl0/MMDVM_HS_Dual_Hat

6 sur 8 08/10/2024 11:31

