HSMM-MESH Seminar Session 1

Kipton Moravec AE5IB January, 8 2011 Lucas, Texas

Overview of HSMM and the HSMM-MESH software

- What is HSMM?
- What is it used for?
- What is the Hardware?
- What is the Software?
- What is OLSR and why do we care?
- What else do you need to know?

What is HSMM?

- HSMM = High Speed MultiMedia
 - General Term not a specific mode
 - Digital Radio but not keyboard communication
- All Modes Supported
 - Digital Voice
 - Digital Video
 - Keyboard Communications (Chat)
 - File Transfers
 - Email and surf the Internet

HSMM is not a Mode or Frequency

Needs wide bandwidth – higher frequencies

HOWEVER

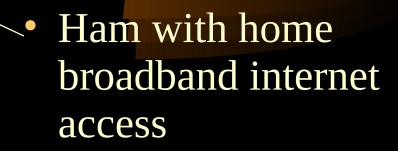
- For the purposes of this presentation we will be talking about using modified WiFi equipment and generally 2.4 GHz
- And Software we call it HSMM-MESH (TM)

What is it used for?

- Anything you can do on the Internet you can do with this.
 - Email
 - Surf Internet
 - Transfer/Stream Pictures, Video, files
 - Video Teleconfrencing (Skype)
 - Telephone (Vonage)

Uses For High Speed Data

- Shelter Operations
 - Client Email or Telephone
 - Written Text to Hospitals and Pharmacies
- Disaster
 - Realtime Video
 - Video of Wall Cloud, Tornado, Fire
 - Photographs
 - Trees Down, Hail, Power Lines
 - Telephone Video Conferencing


Uses For High Speed Data (2)

- Infrastructure Failure
 - Support Police / Fire
 - Support Hospitals
 - Support Responders in field
 - ARES (Amateur Radio Emergency Service)
 - CERT (Citizen Emergency Response Team)
 - MRC (Medical Reserve Corps)
- Public Service Events
- Field Day

Planning 2007 PARK Field Day


- Found Ham that lived about a mile from Field Day.
- Break in trees provided CLOS to the hill we were on.

Relay

Field Day site

Planning 2007 Plano Balloon Festival

- Surveyed site, asked Church if we could have access for the weekend
- Because of Wide angles we decided to go Vertical Polarity

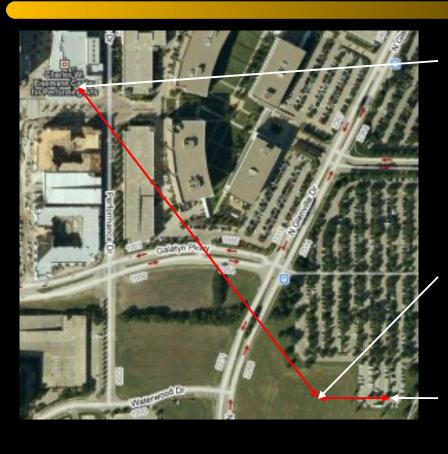
Balloon Festival Site

- Field Operations
- Communications Trailer
- Flight Director Scissor Lift
- Field Entry/Exit Point Camera
- First United Methodist Church (Internet Access)

PBF Church Routing

- 15 db Rootenna Ch1wire from access point
- Access Point for Church WiFi Ch 6

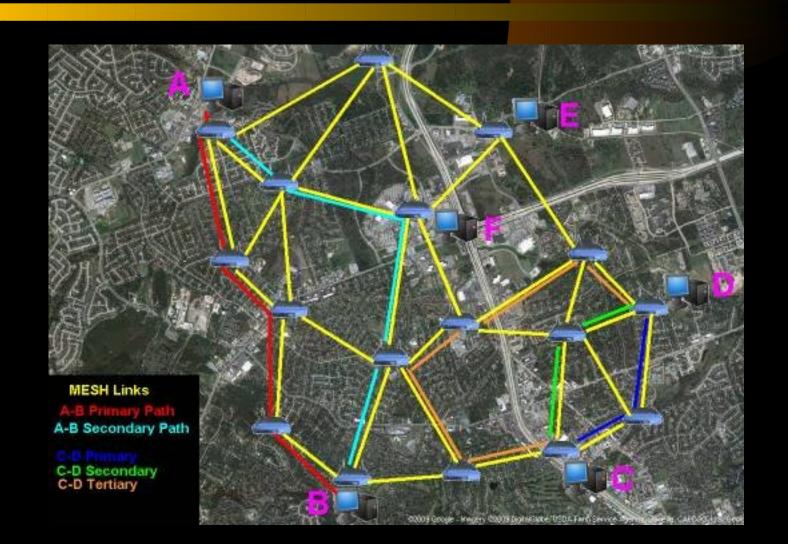
Church Public WiFi Router Ch 6


Planning 2008 Wild Ride

- Goal: Provide pictures from Rest Stops to Start/Finish Line
- Have had lots of problems with 2.4 GHz
- 2007 used D-Star 1.2 GHz, worked well
- Found W5LT with a 70' tower that we guessed had CLOS to two of our sites. And he has high speed Internet access.
- Repeated in 2009 and 2010

Wild Ride Rest Stop 2 and 3

2007-2008 Wild Ride Start/Finish Line



 Eismann Center Internet Access

Relay point

Start Finish Line

Austin HSMM-MESH

HSMM-MESH for APRS

- APRS I-Gate sends APRS data to Internet Servers
 - I-Gate can be connected to HSMM-MESH Node
- Local Digipeaters can connect to Wide Digipeater using HSMM-MESH
 - Digipeaters do not repeat on APRS Frequency
 - Reduces Bandwidth increases users
- AE5PL javAPRSServ SW supports this

HSMM-MESH for Weather

- Could have weather stations connect and report rain fall, and wind speed.
- Could have video cameras stream video during weather events.
 - Remote Locations
 - Elevated Locations
 - Control Pan-Tilt
- Storm Spotters in vehicles could send video or pictures.

"What HSMM-MESH is used for?" Summary

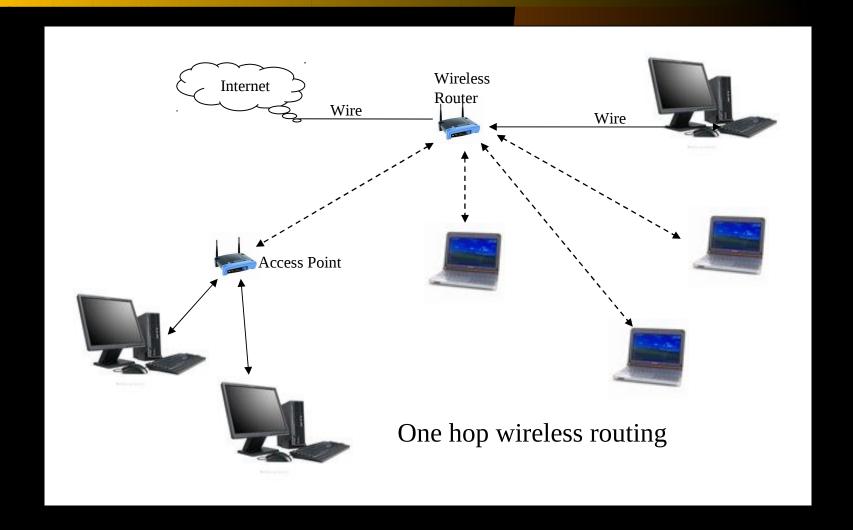
- Whatever you can do on the Internet!
 - Talk
 - Stream Video
 - Transfer Data
 - Email
 - Maps
 - The list is endless

2.4 GHz HSMM-MESH is Fast

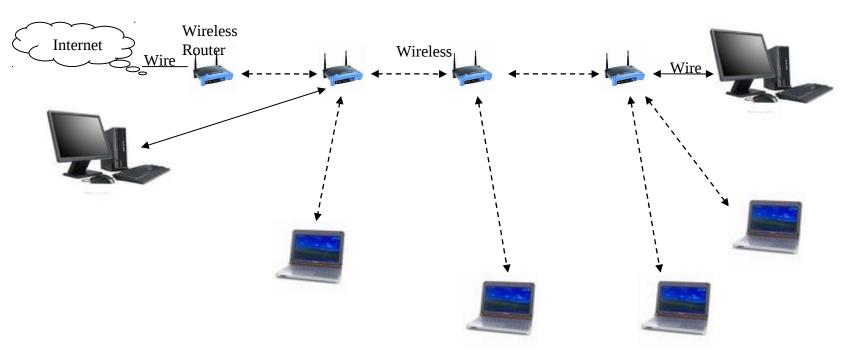
- The RF links are around 27- 54 Mbps
 - Packet Radio/APRS 0.0012 Mbps
 - Pactor III .003 Mbps
 - D-Star DD 0.128 Mbps
- Home Service
 - FiOS (Fiberoptics) 2 -15Mbps up / 15-25 Mbps down
 - T1 1.5 Mbps
 - DSL up to 1.5 Mbps up / 6 Mbps down
 - often 0.768 Mbps, 0.512 Mbps, 0.368 Mbps
 - Dialup 0.014 0.056 Mbps

Strategy and Planning

- Know what the system can do and its limits
 - Channels 1, 6, and 11 are non-overlapping
 - Channel 1, 6 are in Ham band, 11 is not
 - Need Clear Line of Sight
 - Trees attenuate a lot
 - Hills, buildings block


Security

- Interpretation to ARRL HSMM WG from FCC Enforcement Branch via Chris Imlay
- Radio Amateurs using 802.11 type modulation under Part 97 could use WEP, WPA, etc as our intent or purpose is to provide authentication and thus protect our networks from part 15 intrusions... and not obscure the meaning of the signals.
- Under the following 4 conditions:
 - 1. Use only frequencies above 50 MHz
 - 2. No foreign/international traffic is permitted
 - 3. The type of encryption used must be standardized and published
 - 4. The specific encryption key used must be recorded in the station logbook
- More detail in ARRL VHF Digital Handbook, Chapter 7, HSMM Radio

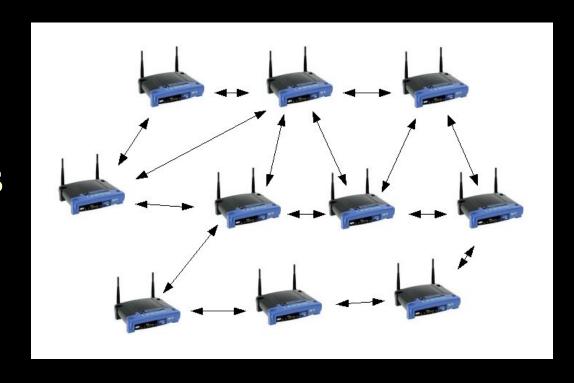

Software

- Why change software?
 - More control
 - Add functions
 - Wireless backbone
 - Mesh

Off the Shelf Software

Alternate Software

Multiple hop wireless routing


Advantages of a Mesh

- Self Forming
 - Mesh forms automatically
- Fault Tolerance
 - Data automatically rerouted if a node fails
- Self Healing
 - Once fixed, node rejoins the mesh seamlessly
- Community Ownership
 - Ownership is shared, node by node

- Low Cost Infrastructure
 - Built using low cost off the shelf consumer equipment
- Incremental Cost of Expansion is Low
 - Adding node expands area coverage for the cost of the node
- Ease of Deployment
 - Little or no training needed

MESH automatically finds Routes

- Finds shortest route
- Fixes broken routes
- Adds routers as they show up
- No manual configuration

MESH simplifies everything

- I have spent hours configuring routers to link together
- Operating HSMM-MESH joins net <10 seconds when in range.
- Cold start HSMM-MESH joins net < 60 sec.
- Cars with a HSMM-MESH router can drive around and automatically switch from one router to another, like a cell phone.

What's needed for HSMM-MESH

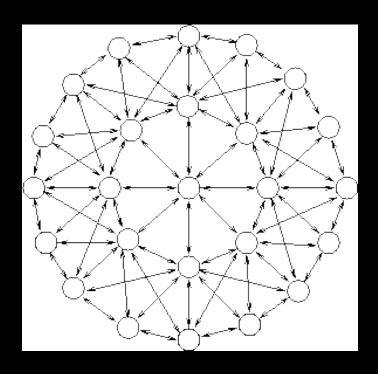
- Custom SW HSMM-MESH
- Off the shelf WiFi Routers
 - \$50 \$100 (less than any new Ham radio)
 - Must support external antennas
 - − Operate channels 1 − 6 Ham Bands
- High Gain Antennas
 - \$20 \$100 (or More) Omni or Directional
- Accessories
 - Power, batteries, cables, masts, boxes, etc.

SW History

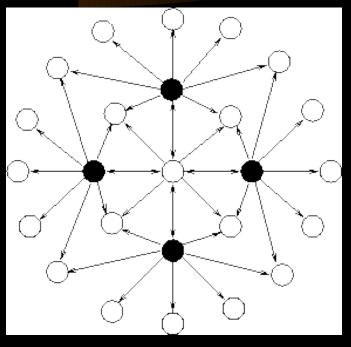
- Linksys used Linux for the WRT54G
 - Modified the OS to work with the Broadcom Processor.
 - First version December 2002
- According to the GPL they had to share the code
 - Showed everyone how to program the processor
- On WRT54G v.5 they switched to VxWorks OS
 - Reduced Flash from 4MB to 2MB
 - Reduced RAM from 16 MB to 8 MB
 - v.8 changed to hardwired antennas, no antenna connector

OpenWRT

- OpenWRT and Sveasoft first developed SW for the router once it was released under GPL
 - DD-WRT was a fork from this, and still incorporate updates from OpenWRT
- Originally supported only WRT54G
 - Now supports many different routers and chipsets
 - http://oldwiki.openwrt.org/TableOfHardware.html


OpenWRT

- Very little GUI, mostly a command line interface
 - Reason I started with DD-WRT
 - But more flexible


OLSR

- Optimized Link State Routing Protocol is an IP routing protocol which is optimized for mobile ad-hoc networks.
 - Mesh Network
 - Fast insertion < 60 seconds after power-up
- Olsrd started out as part of the master thesis project for Andreas Tønnesen at UniK -University Graduate Center.
- RFC 3626

How OLSR Works

Flooding a packet in a wireless multi-hop network. The arrows show all transmissions.

Flooding a packet in a wireless multi-hop network from the center node using MPRs(black). The arrows show all transmissions.

Node Status

AE5IB-AP4

 Help
 Refresh
 Mesh Status
 OLSR Status
 WiFi Scan
 Setup
 □ Night Mode

WiFi address 10.122.107.89 / 8

fe80::21e:e5ff:fe7a:6b59 Link

LAN address 172.27.0.1 / 24 fe80::21e:e5ff:fe7a:6b57 Link

WAN address none

fe80::21e:e5ff:fe7a:6b57 Link

default gateway none

your address 172.27.0.5

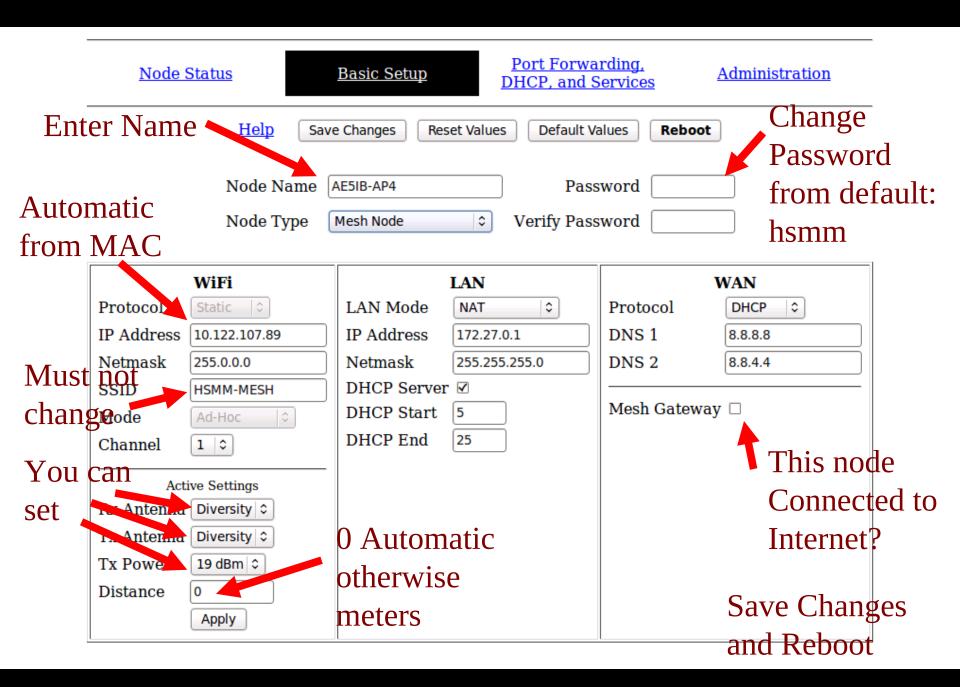
Signal/Noise/Ratio N/A

firmware version 0.4.0 configuration mesh

 $\begin{array}{ll} \textbf{system time} & \text{Sat Jan 1 2000} \\ 00:03:48 \text{ UTC} \end{array}$

uptime 3 min

load average 0.09, 0.13, 0.05


flash = 688 KB

Auto

free space /tmp = 7080 KB memory = 2332 KB

Setup Page

Node Status		Basic Setup Port Forwa DHCP, and S		rding, Services	Administration	
Help Save Changes Reset Values Default Values Reboot						
Node Name AE5IB-AP4 Password						
Node Type Mesh Node Company Verify Password Company						
WiFi		LAN		WAN		
Protocol	Static 0	LAN Mode	NAT 🗦	Protocol	DHCP \$	
IP Address	10.122.107.89	IP Address	172.27.0.1	DNS 1	8.8.8.8	
Netmask	255.0.0.0	Netmask	255.255.255.0	DNS 2	8.8.4.4	
SSID	HSMM-MESH	DHCP Serve	r 🗹			
Mode	fode Ad-Hoc		DHCP Start 5		Mesh Gateway □	
Channel	1 \$	DHCP End	25			
Acti	ive Settings					
Rx Antenna						
Tx Antenna	Diversity \$					
Tx Power	19 dBm \$					
Distance	0					
	Apply					

OLSR Status (Night Mode)

AE5IB-AP4

Help Refresh

Mesh Status

OLSR Status

WiFi Scan

Setup

✓ Night Mode

Auto

your address 172.27.0.5

Signal/Noise/Ratio -40 / -85 / 45 dB

firmware version 0.4.0 configuration mesh

MESH Status Tab

AE5IB-AP4 mesh status

Refresh Auto Quit **Current Neighbors** Services **Local Hosts** LQ Services AE5IB-AP2 100% AE5IB-AP4 N5OOM-AP3 94% N5OOM-AP6 100% Remote Nodes ETX Services k5prk-ap1 89% none **Previous Neighbors** When none

OLSR Routes Tab

olsr.org OLSR daemon on AE5IB-AP4

Configuration	Routes Links/Topology	All About Node Status	3						
OLSR Routes in Kernel									
Destination		Gateway		Metric	ETX Interface				
0.0.0.0/0		10.217.147.42	(N5OOM-AP3)	1	1.209 wl0				
10.1.96.15	(k5prk-ap1)	10.1.96.15	(k5prk-ap1)	1	1.000 wl0				
10.148.146.9	(AE5IB-AP2)	10.148.146.9	(AE5IB-AP2)	1	1.063 wl0				
10.164.157.185	(N5OOM-AP6)	10.164.157.185	(N5OOM-AP6)	1	1.000 wl0				
10.217.147.42	(N5OOM-AP3)	10.217.147.42	(N5OOM-AP3)	1	1.209 wl0				

(C)2005 Andreas Tønnesen http://www.olsr.org

OLSR Links Tab

olsr.org OLSR daemon on AE5IB-AP4

		L	inks					
ocal IP		Remote IP				Hysteresis LinkCost		
10.122.107.89(AE		10.217.147.42 (N5OOM-AP3)				0.00	(1.000/0.878) 1.1	
10.122.107.89(AE5IB-AP4)		10.164.157.185 (N5OOM-AP6)				0.00	(0.831/1.000) 1.2	
0.122.107.89(AE	<u> 51B-AP4</u>)	10.148.146.9	(AE5IE	3-AP2)		0.00	(1.000/1.000) 1.0	
10.122.107.89(AE5IB-AP4)		10.1.96.15 (k5prk-ap1)				0.00 (1.000/1.000)		
		Neig	hbors					
P Address		SYM	MPR	MPRS	Willingness	2 Hop Neighbor	s	
0.164.157.185	(N5OOM-AP6)	YES	NO	NO	3	IP ADDRESS	(3)	
10.1.96.15	(<u>k5prk-ap1</u>)	YES	NO	NO	3	IP ADDRESS	♦ (3)	
10.217.147.42	(N5OOM-AP3)	YES	NO	NO	3	IP ADDRESS	(3)	
0.148.146.9	(AE5IB-AP2)	YES	NO	NO	3	IP ADDRESS	(3)	
		Topolo	gy Ent	ries				
Destination IP		Last Hop	P			L	inkcost	
10.1.96.15	(k5prk-ap1)	10.148.146	6.9	(AE5IB-AP2)		(1	.000/1.000) 1.000	
0.217.147.42	(N5OOM-AP3)	10.148.146	5.9	(AE5IB-AP2)		(1	.000/0.894) 1.118	
0.122.107.89	(AE5IB-AP4)	10.148.146	5.9	(AE5IB-AP2)		(1	.000/1.000) 1.000	
0.164.157.185	(N5OOM-AP6)	10.148.146	6.9	(AE5IB-AP2)		(1	.000/1.000) 1.000	
0.148.146.9	(AE5IB-AP2)	10.1.96.15		(<u>k5prk-ap1</u>)		(1	.000/1.000) 1.000	
0.217.147.42	(N5OOM-AP3)	10.1.96.15		(<u>k5prk-ap1</u>)		(1	.000/0.831) 1.202	
0.122.107.89	(AE5IB-AP4)	10.1.96.15		(<u>k5prk-ap1</u>)		(1	.000/1.000) 1.000	
0.164.157.185	(N5OOM-AP6)	10.1.96.15		(<u>k5prk-ap1</u>)		(0	.886/1.000) 1.128	
0.148.146.9	(AE5IB-AP2)	10.217.147	7.42	(N5OOM-AP3)		(0	.886/1.000) 1.128	
0.1.96.15	(<u>k5prk-ap1</u>)	10.217.147	7.42	(N5OOM-AP3)		(0	.819/1.000) 1.220	
0.122.107.89	(AE5IB-AP4)	10.217.147	7.42	(N5OOM-AP3)		(0	.878/1.000) 1.138	
0.164.157.185	(N5OOM-AP6)	10.217.147	7.42	(N5OOM-AP3)		(0	.497/1.000) 2.008	
0.148.146.9	(AE5IB-AP2)	10.122.107	7.89	(AE5IB-AP4)		(1	.000/1.000) 1.000	
10.1.96.15	(k5prk-ap1)	10.122.107	7.89	(AE5IB-AP4)		(1.000/1.000) 1.000		
0.217.147.42	(N5OOM-AP3)	10.122.107	7.89	(AE5IB-AP4)		(1.000/0.878) 1.138		
0.164.157.185	(N5OOM-AP6)	10.122.107	7.89	(AE5IB-AP4)		(0	.831/1.000) 1.202	
0.148.146.9	(AE5IB-AP2)	10.164.157	7.185	(N5OOM-AP6)		(1.000/1.000) 1.000		
0.1.96.15	(k5prk-ap1)	10.164.157	7.185	(N5OOM-AP6)		(1.000/0.886) 1.128		
0.217.147.42	(N5OOM-AP3)	10.164.157	7.185	(N5OOM-AP6)		(1.000/0.497) 2.008		
0.122.107.89	(AE5IB-AP4)	10.164.157	7.185	(N5OOM	-AP6)	(1	.000/0.886) 1.128	
		MID	Entries	3				

OLSR About Tab

olsr.org OLSR daemon on AE5IB-AP4

Configuration

Routes

Links/Topology

About

Node Status

Httpinfo olsrd plugin version 0.1

by Andreas Tønnesen (C)2005. Compiled 2010-08-14 23:45:40 at mini

This plugin implements a HTTP server that supplies the client with various dynamic web pages representing the current olsrd status. The different pages include:

- . Configuration This page displays information about the current olsrd configuration. This includes various olsr settings such as IP version, MID/TC redundancy, hysteresis etc. Information about the current status of the interfaces on which olsrd is configured to run is also displayed. Loaded olsrd plugins are shown with their plugin parameters. Finally all local HNA entries are shown. These are the networks that the local host will anounce itself as a gateway to.
- . Routes This page displays all routes currently set in the kernel by olsrd. The type of route is also displayed(host or HNA).
- Links/Topology This page displays all information about links, neighbors, topology, MID and HNA entries.
- . All Here all the previous pages are displayed as one. This is to make all information available as easy as possible(for example for a script) and using as few resources as possible.
- · About this help page.

Send questions or comments to olsr-users@olsr.org or andreto-at-olsr.org

Official olsrd homepage: http://www.olsr.org

(C)2005 Andreas Tønnesen

http://www.olsr.org

HSMM-MESH Routers

- WRT54G (v1-4)
- WRT54GL (all)
- USR5461
- WA840G
- WE800G
- WR850G (v1-3)

- WRT150N
- WRT300N (v1)
- WRT54G3G
- WRT54GS (v1-3)
- WRT54GS (v4)
- WRTSL54GS (all)

Stay with WRT54GL to be safest

Router I Like

- Linksys WRT54G used
 - Versions lower than v.4
 - 4 Mb Flash
 - Current new is v.8
 - 2 Mb Flash
 - Soldered Antennas
- Linksys WRT54GL new
 - Linksys v.4
 - 4 Mb Flash
 - \$54.00 \$79.99 New
- Built in regulator for 12VDC (7.5V to 18V DC)
- Two Serial Ports!

After Default HSMM-MESH Setup

Antennas

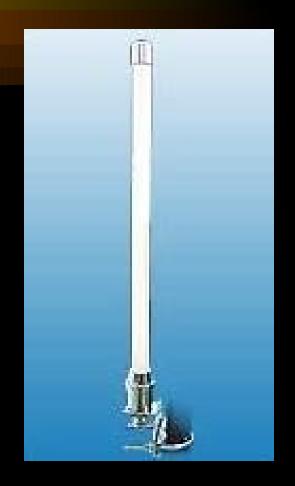
- All kinds available on internet
 - The ones in retail stores are very expensive!
- Vertical polarity
 - Omni-directional best for HSMM-MESH
 - Laptop Computers
- Horizontal polarity for point-to-point networking.
 - Less interference from other users

Range


- Range is based on
 - Antenna
 - Noise
- Assume
 - Clear Line of Sight
 - Good Day
 - − 19 db Transmitter

- Two 12 db 5 mi
- Two 15 db 10 mi
- Two 19 db 24 mi

Bigger is Better


15 db Omni

- Titan Wireless AT-15OM-24
- Lowest price 15 db Omni \$60
- N connector
- Probably base the Collin County HSMM-MESH on this
 - High Gain
 - Low Cost
 - Fast Delivery

8 db Omni

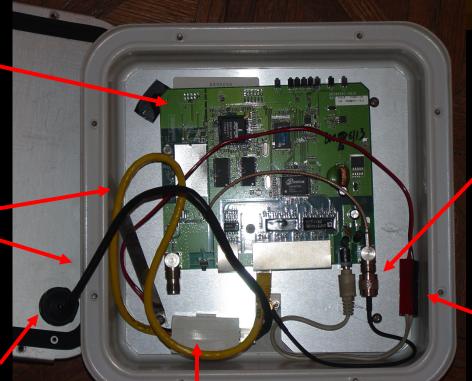
- Titan Wireless AT-80M-24
- 8 db omni \$29
- About 1 foot tall
- Good for special events and short distances

RooTenna

- RooTennas
 - Mounts on mast, easy switch from vertical to horizontal
 - Built-in housing for router
 - 19 db with housing
 - \$70.00 \$74.00
 - 15 db with housing
 - \$36.00 \$45.00

Pacific Wireless

http://www.pacwireless.com


Inside 15 db Rootenna

WRT54G Out of Box

Ethernet Cable

Weatherproof

Ethernet Connector

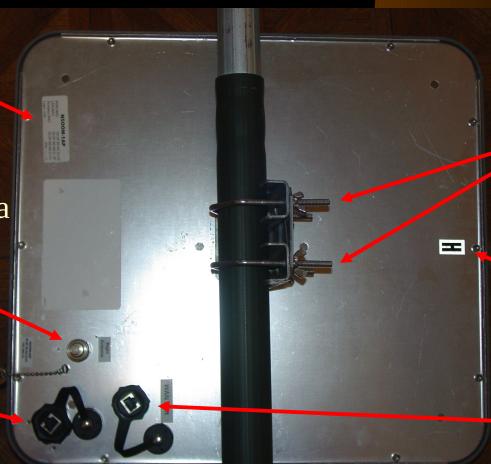
Antenna Connector

Power Poles
Easy to add
Capacitor

POE Injector

19 db Rootenna

- Good Price \$70
- Large area for electronics
- Range Experience
 - 19 db to 15 db 5 mi
 - 19 db to 24 db 10 mi



N5OOM-AP1 19 db Rootenna

ID Label

Right Antenna Jack, (w/50 Ohm Term.)

LAN Conn.

SS Wing Nuts for quick setup

Polarity Label

WAN Conn.

Antennas We Like

- HyperLink Die Cast Reflector Grid
 - Models
 - 30 db 5.3° beam \$479.99
 - 24 db 8° beam \$69.99
 - 19 db 12° beam \$59.99
 - 15 db 16° beam \$49.99
- 24 db is recommended
 - Otherwise RooTenna is cheaper

L-Com Technologies

http://www.l-com.com

RFelements StationBox

- Titan Wireless
- 14 db directional antenna \$25
- I have not tried this but it looks like a good deal.

KD5MFW 2 Ant.

- 12 db omni
- 24 db directional Horz. Pol

AD500 Portable Node

- 12 db Omni Antenna
- Weatherproof Box for Router
- Tripod
- Mast

Companies to know about

- fab-corp.com
- l-com.com
- wlanparts.com
- titanwirelessonline.com

Antenna Lightning Protection

- If you are doing a permanent outdoor mount use a surge protector.
- Make sure it covers 2.4 GHz
- Have a good ground

Ethernet Lightning Protection

- For Permanent Installation
- Add Surge Protection for Ethernet cables
 - Top and Bottom
- Good Ground

Passive Power Over Ethernet

- I like 12V Passive P.O.E.
 - Simple adapters
 - Home made or purchased
 - Use Power Poles for 12V power
 - Compatible with rest of Ham Equipment

• Simplifies wiring - 1 Ethernet wire

Home Made Passive POE Adapters

- It is easy to make you own Passive POE Adaptors.
- Parts easily bought
- Use Red for side with power.
- Use White for side with no power.
- Use 2.1 mm DC Power Connectors
- Or Power Poles

N500M Passive POE Injector

- 4 Power Poles
- 6 POE Injectors
- Parts from Altex
- Great for the battery box

N500M Passive POE Injector

- 2 POE Injector
- Power Pole Cable
- Mounted with Velcro on a 10/100 Mb Switch
 - Also 12V Power

Problems with Passive 12V POE

- Ethernet is small wire, and can run up to 100 meters or about 8 ohms and 29 mH at that distance.
- The router current changes continuously
- The router has a switching power supply so as the input voltage is lower it requires more current
- WRT54G v2 averages 5.25W
- Perfect Storm

12V POE Solution

- Only noticed problem on POE Ethernet runs 200 feet and over
- To smooth out the current demand need a big capacitor.
- 10,000 MFD Works 1000 MFD Does not.
- The voltage stayed steady enough that I was able to reduce the supply to 7.5 volts at the router and it still worked.
- Adding 10,000 MFD, 50V 105°C Electrolytic capacitor to all routers because you do not know how long Ethernet runs will be.

48V Power Over Ethernet

- The Standard for POE is 48V (Different Suppliers can vary from this.)
- Uses less current, so voltage drop is less
- More Expensive
 - Need 48V power supply at the bottom
 - Need 48V to 12V switcher at router
- May be needed in some situations
- Do not mix with 12V POE
- We use Yellow and Black Power Poles

48V to 12V POE

12V Power Pole 48V DC in

Six POE Injectors

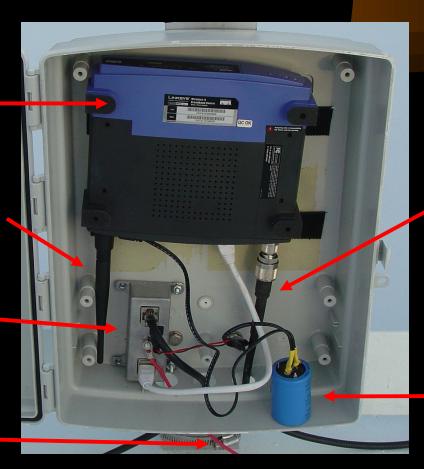
> Power Light

Four 12V Power Pole

48V DC in

K5PRK-AP1

- HSMM-MESH node on water tower near Bethany and US75
- City installed narrow band 2.4 GHz data transmitters. Their power saturated our receivers and we could not communicate.

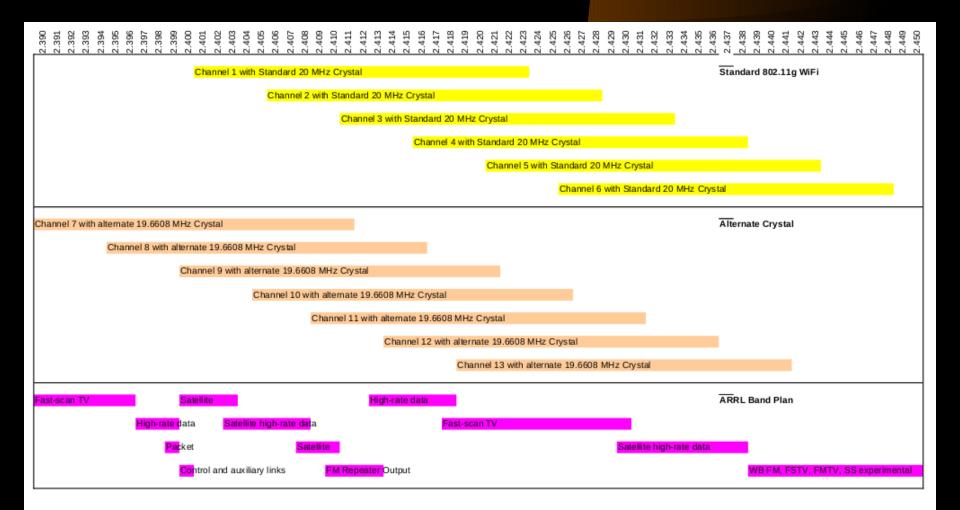

K5PRK-AP1 Router

WRT54G v2

Stock Antenna

POE Injector and surge — arrestor

Ground Wire


Cable to lightning arrester and 15 db omni Antenna

10,000 MFD Capacitor on power input

Interesting Web Links

- HSMM-MESH Site
 - http://www.hsmm-mesh.org
- Building a Rural Wireless Mesh Network
 - http://wirelessafrica.meraka.org.za/wiki/index.php/DIY_Mesh_ Guide
- Wireless Networking for the Developing World
 - http://wndw.net/
- N500M HSMM Page
 - http://www.n5oom.org/hsmm/

Change Crystal to 19.6608 MHz

