1867 lines
75 KiB
C++
1867 lines
75 KiB
C++
|
/* SPDX-License-Identifier: GPL-3.0
|
||
|
* based on https://github.com/rs1729/RS/blob/master/rs92/nav_gps_vel.c
|
||
|
*
|
||
|
Quellen:
|
||
|
- IS-GPS-200H (bis C: ICD-GPS-200):
|
||
|
http://www.gps.gov/technical/icwg/
|
||
|
- Borre: http://kom.aau.dk/~borre
|
||
|
- Essential GNSS Project (hier und da etwas unklar)
|
||
|
*/
|
||
|
#include <math.h>
|
||
|
#include <inttypes.h>
|
||
|
#include <SPIFFS.h>
|
||
|
#include <Arduino.h>
|
||
|
#include <stdio.h>
|
||
|
|
||
|
#include "nav_gps_vel.h"
|
||
|
|
||
|
#ifndef PI
|
||
|
#define PI (3.1415926535897932384626433832795)
|
||
|
#endif
|
||
|
|
||
|
#define RELATIVISTIC_CLOCK_CORRECTION (-4.442807633e-10) // combined constant defined in IS-GPS-200 [s]/[sqrt(m)]
|
||
|
#define GRAVITY_CONSTANT (3.986005e14) // gravity constant defined on IS-GPS-200 [m^3/s^2]
|
||
|
#define EARTH_ROTATION_RATE (7.2921151467e-05) // IS-GPS-200 [rad/s]
|
||
|
#define SECONDS_IN_WEEK (604800.0) // [s]
|
||
|
#define LIGHTSPEED (299792458.0) // light speed constant defined in IS-GPS-200 [m/s]
|
||
|
|
||
|
#define RANGE_ESTIMATE (0.072) // approx. GPS-Sat range 0.072s*299792458m/s=21585057m
|
||
|
#define RANGERATE_ESTIMATE (0.000) //
|
||
|
|
||
|
#define EARTH_a (6378137.0)
|
||
|
#define EARTH_b (6356752.31424518)
|
||
|
#define EARTH_a2_b2 (EARTH_a*EARTH_a - EARTH_b*EARTH_b)
|
||
|
|
||
|
/* ---------------------------------------------------------------------------------------------------- */
|
||
|
|
||
|
|
||
|
void ecef2elli(double X, double Y, double Z, double *lat, double *lon, double *alt) {
|
||
|
double ea2 = EARTH_a2_b2 / (EARTH_a*EARTH_a),
|
||
|
eb2 = EARTH_a2_b2 / (EARTH_b*EARTH_b);
|
||
|
double phi, lam, R, p, t;
|
||
|
double sint, cost;
|
||
|
|
||
|
lam = atan2( Y , X );
|
||
|
|
||
|
p = sqrt( X*X + Y*Y );
|
||
|
t = atan2( Z*EARTH_a , p*EARTH_b );
|
||
|
|
||
|
sint = sin(t);
|
||
|
cost = cos(t);
|
||
|
|
||
|
phi = atan2( Z + eb2 * EARTH_b * sint*sint*sint ,
|
||
|
p - ea2 * EARTH_a * cost*cost*cost );
|
||
|
|
||
|
R = EARTH_a / sqrt( 1 - ea2*sin(phi)*sin(phi) );
|
||
|
*alt = p / cos(phi) - R;
|
||
|
|
||
|
*lat = phi*180.0/PI;
|
||
|
*lon = lam*180.0/PI;
|
||
|
}
|
||
|
|
||
|
|
||
|
double dist(double X1, double Y1, double Z1, double X2, double Y2, double Z2) {
|
||
|
return sqrt( (X2-X1)*(X2-X1) + (Y2-Y1)*(Y2-Y1) + (Z2-Z1)*(Z2-Z1) );
|
||
|
}
|
||
|
|
||
|
|
||
|
void rotZ(double x1, double y1, double z1, double angle, double *x2, double *y2, double *z2) {
|
||
|
double cosa = cos(angle);
|
||
|
double sina = sin(angle);
|
||
|
*x2 = cosa * x1 + sina * y1;
|
||
|
*y2 = -sina * x1 + cosa * y1;
|
||
|
*z2 = z1;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* ---------------------------------------------------------------------------------------------------- */
|
||
|
|
||
|
/* ---------------------------------------------------------------------------------------------------- */
|
||
|
|
||
|
#if 0
|
||
|
int read_SEMalmanac(FILE *fp, EPHEM_t *alm) {
|
||
|
int l, j;
|
||
|
char buf[64];
|
||
|
unsigned n, week, toa, ui;
|
||
|
double dbl;
|
||
|
|
||
|
l = fscanf(fp, "%u", &n); if (l != 1) return -1;
|
||
|
l = fscanf(fp, "%s", buf); if (l != 1) return -1;
|
||
|
l = fscanf(fp, "%u", &week); if (l != 1) return -1;
|
||
|
l = fscanf(fp, "%u", &toa); if (l != 1) return -1;
|
||
|
|
||
|
for (j = 1; j <= n; j++) {
|
||
|
//memset(&ephem, 0, sizeof(ephem));
|
||
|
|
||
|
alm[j].week = (uint16_t)week;
|
||
|
alm[j].toa = (uint32_t)toa;
|
||
|
alm[j].toe = (double)toa;
|
||
|
alm[j].toc = alm[j].toe;
|
||
|
|
||
|
l = fscanf(fp, "%u", &ui); if (l != 1) return -1; alm[j].prn = (uint16_t)ui;
|
||
|
l = fscanf(fp, "%u", &ui); if (l != 1) return -2; alm[j].svn = (uint16_t)ui;
|
||
|
l = fscanf(fp, "%u", &ui); if (l != 1) return -3; alm[j].ura = (uint8_t)ui;
|
||
|
l = fscanf(fp, "%lf", &dbl); if (l != 1) return -4; alm[j].e = dbl;
|
||
|
l = fscanf(fp, "%lf", &dbl); if (l != 1) return -5; alm[j].delta_i = dbl;
|
||
|
alm[j].i0 = (0.30 + alm[j].delta_i) * PI;
|
||
|
l = fscanf(fp, "%lf", &dbl); if (l != 1) return -6; alm[j].OmegaDot = dbl * PI;
|
||
|
l = fscanf(fp, "%lf", &dbl); if (l != 1) return -7; alm[j].sqrta = dbl;
|
||
|
l = fscanf(fp, "%lf", &dbl); if (l != 1) return -6; alm[j].Omega0 = dbl * PI;
|
||
|
l = fscanf(fp, "%lf", &dbl); if (l != 1) return -8; alm[j].w = dbl * PI;
|
||
|
l = fscanf(fp, "%lf", &dbl); if (l != 1) return -9; alm[j].M0 = dbl * PI;
|
||
|
l = fscanf(fp, "%lf", &dbl); if (l != 1) return -10; alm[j].af0 = dbl;
|
||
|
l = fscanf(fp, "%lf", &dbl); if (l != 1) return -11; alm[j].af1 = dbl;
|
||
|
alm[j].af2 = 0;
|
||
|
alm[j].crc = 0;
|
||
|
alm[j].crs = 0;
|
||
|
alm[j].cuc = 0;
|
||
|
alm[j].cus = 0;
|
||
|
alm[j].cic = 0;
|
||
|
alm[j].cis = 0;
|
||
|
alm[j].tgd = 0;
|
||
|
alm[j].idot = 0;
|
||
|
alm[j].delta_n = 0;
|
||
|
l = fscanf(fp, "%u", &ui); if (l != 1) return -12; alm[j].health = (uint8_t)ui;
|
||
|
l = fscanf(fp, "%u", &ui); if (l != 1) return -13; alm[j].conf = (uint8_t)ui;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int read_RNXephemeris(FILE *fp, EPHEM_t eph[][24]) {
|
||
|
int l, i;
|
||
|
char buf[64], str[20];
|
||
|
char buf_header[83];
|
||
|
//buf_data[80]; // 3 + 4*19 = 79
|
||
|
char *pbuf;
|
||
|
unsigned ui;
|
||
|
double dbl;
|
||
|
int c;
|
||
|
EPHEM_t ephem = {};
|
||
|
int hr = 0;
|
||
|
|
||
|
do {
|
||
|
//l = fread(buf_header, 81, 1, fp); // Zeilen in Header sind nicht immer mit Leerzeichen aufgefuellt
|
||
|
pbuf = fgets(buf_header, 82, fp); // max 82-1 Zeichen + '\0'
|
||
|
buf_header[82] = '\0'; // doppelt haelt besser
|
||
|
//l = strlen(buf_header);
|
||
|
} while ( pbuf && !strstr(buf_header, "END OF HEADER") );
|
||
|
|
||
|
//l = fread(buf_data, 80, 1, fp);
|
||
|
//buf_data[79] = '\0';
|
||
|
|
||
|
|
||
|
while (hr < 24) { // brdc/hour-rinex sollte nur Daten von einem Tag enthalten
|
||
|
|
||
|
//memset(&ephem, 0, sizeof(ephem));
|
||
|
|
||
|
l = fread(buf, 3, 1, fp); if (l != 1) break; buf[ 3] = 0; sscanf(buf, "%d", &ui);
|
||
|
ephem.prn = ui;
|
||
|
|
||
|
|
||
|
for (i = 0; i < 16; i++) ephem.epoch[i] = '0';
|
||
|
ephem.epoch[16] = '\0';
|
||
|
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; buf[19] = 0;
|
||
|
|
||
|
for (i = 0; i < 6; i++) {
|
||
|
c = buf[3*i ]; if (c == ' ') c = '0'; str[2*i ] = c;
|
||
|
c = buf[3*i+1]; if (c == ' ') c = '0'; str[2*i+1] = c;
|
||
|
}
|
||
|
str[12] = buf[17];
|
||
|
str[13] = buf[18];
|
||
|
str[14] = '\0';
|
||
|
|
||
|
strncpy(ephem.epoch , "20", 2); // vorausgesetzt 21.Jhd; Datum steht auch im Header
|
||
|
strncpy(ephem.epoch+2, str, 15);
|
||
|
ephem.epoch[16] = '\0';
|
||
|
|
||
|
strncpy(str, buf+9, 2); str[2] = '\0';
|
||
|
hr = atoi(str);
|
||
|
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.af0 = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.af1 = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.af2 = dbl;
|
||
|
if ((c=fgetc(fp)) == EOF) break;
|
||
|
|
||
|
l = fread(buf, 3, 1, fp); if (l != 1) break; buf[ 3] = 0;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); //ephem.iode = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.crs = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.delta_n = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.M0 = dbl;
|
||
|
if ((c=fgetc(fp)) == EOF) break;
|
||
|
|
||
|
l = fread(buf, 3, 1, fp); if (l != 1) break; buf[ 3] = 0;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.cuc = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.e = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.cus = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.sqrta = dbl;
|
||
|
if ((c=fgetc(fp)) == EOF) break;
|
||
|
|
||
|
l = fread(buf, 3, 1, fp); if (l != 1) break; buf[ 3] = 0;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.toe = dbl;
|
||
|
ephem.toc = ephem.toe;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.cic = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.Omega0 = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.cis = dbl;
|
||
|
if ((c=fgetc(fp)) == EOF) break;
|
||
|
|
||
|
l = fread(buf, 3, 1, fp); if (l != 1) break; buf[ 3] = 0;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.i0 = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.crc = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.w = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.OmegaDot = dbl;
|
||
|
if ((c=fgetc(fp)) == EOF) break;
|
||
|
|
||
|
l = fread(buf, 3, 1, fp); if (l != 1) break; buf[ 3] = 0;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.idot = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); //ephem.codeL2 = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.gpsweek = (int)dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); //ephem.iodc = dbl;
|
||
|
if ((c=fgetc(fp)) == EOF) break;
|
||
|
|
||
|
l = fread(buf, 3, 1, fp); if (l != 1) break; buf[ 3] = 0;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); //ephem.sva = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.health = (uint8_t)(dbl+0.1);
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.tgd = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); //ephem.iodc = dbl;
|
||
|
if ((c=fgetc(fp)) == EOF) break;
|
||
|
|
||
|
l = fread(buf, 3, 1, fp); if (l != 1) break; buf[ 3] = 0;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); //ephem.ttom = dbl;
|
||
|
pbuf = fgets(buf_header, 82, fp);
|
||
|
/* // die letzten beiden Felder (spare) sind manchmal leer (statt 0.00); manchmal fehlt sogar das drittletzte Feld
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); //ephem.fit = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); //ephem.spare1 = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); //ephem.spare2 = dbl;
|
||
|
if ((c=fgetc(fp)) == EOF) break; */
|
||
|
|
||
|
|
||
|
ephem.week = 1; // ephem.gpsweek
|
||
|
eph[ephem.prn][hr] = ephem;
|
||
|
|
||
|
if (pbuf == NULL) break;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static EPHEM_t *te;
|
||
|
|
||
|
#define fgets(buffer, siz, file) file.read((uint8_t *)buffer, siz)
|
||
|
#define fread(buffer, siz, els, file) (file.read((uint8_t *)buffer, (siz)*(els))/siz)
|
||
|
#define fgetc(file) (char)file.read()
|
||
|
|
||
|
|
||
|
//EPHEM_t *read_RNXpephs(FILE *fp) {
|
||
|
EPHEM_t *read_RNXpephs(const char *file) {
|
||
|
int l, i;
|
||
|
//char buffer[86];
|
||
|
char buf[64], str[20];
|
||
|
unsigned ui;
|
||
|
double dbl;
|
||
|
int c;
|
||
|
EPHEM_t ephem = {};
|
||
|
// int count = 0;
|
||
|
//long fpos;
|
||
|
|
||
|
File fp = SPIFFS.open(file, "r");
|
||
|
if(!fp) { Serial.printf("Error opening %s\n", file); }
|
||
|
|
||
|
String line;
|
||
|
do { // header-Zeilen: 80 Zeichen
|
||
|
line = fp.readStringUntil('\n');
|
||
|
//pbuf = fgets(buffer, 84, fp); // max 82-1 Zeichen
|
||
|
//buffer[82] = '\0';
|
||
|
Serial.printf("Skipping header: %s\n", line.c_str());
|
||
|
} while ( fp.available() && !strstr((const char *)line.c_str(), "END OF HEADER") );
|
||
|
if (!fp.available()) return NULL;
|
||
|
/*
|
||
|
fpos = ftell(fp);
|
||
|
count = 0;
|
||
|
while (count >= 0) { // data-Zeilen: 79 Zeichen
|
||
|
pbuf = fgets(buffer, 84, fp); if (pbuf == 0) break;
|
||
|
strncpy(str, buffer, 3);
|
||
|
str[3] = '\0';
|
||
|
sscanf(str, "%d", &ui);
|
||
|
if (ui < 33) count++;
|
||
|
for (i = 1; i < 8; i++) {
|
||
|
pbuf = fgets(buffer, 84, fp); if (pbuf == 0) break;
|
||
|
}
|
||
|
}
|
||
|
printf("Ephemerides: %d total=%d\n", count, count*sizeof(ephem));
|
||
|
|
||
|
fseek(fp, fpos, SEEK_SET);
|
||
|
*/
|
||
|
if(te) free(te);
|
||
|
te = (EPHEM_t *)calloc( 34, sizeof(ephem) ); // calloc( 1, sizeof(ephem) );
|
||
|
if (te == NULL) return NULL;
|
||
|
|
||
|
//int n = 0;
|
||
|
|
||
|
|
||
|
while (true) { // brdc/hour-rinex sollte nur Daten von einem Tag enthalten
|
||
|
|
||
|
//memset(&ephem, 0, sizeof(ephem));
|
||
|
|
||
|
l = fread(buf, 3, 1, fp); if (l != 1) break; buf[ 3] = 0; sscanf(buf, "%d", &ui);
|
||
|
ephem.prn = ui;
|
||
|
|
||
|
for (i = 0; i < 16; i++) ephem.epoch[i] = '0';
|
||
|
ephem.epoch[16] = '\0';
|
||
|
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; buf[19] = 0;
|
||
|
|
||
|
for (i = 0; i < 6; i++) {
|
||
|
c = buf[3*i ]; if (c == ' ') c = '0'; str[2*i ] = c;
|
||
|
c = buf[3*i+1]; if (c == ' ') c = '0'; str[2*i+1] = c;
|
||
|
}
|
||
|
str[12] = buf[17];
|
||
|
str[13] = buf[18];
|
||
|
str[14] = '\0';
|
||
|
|
||
|
strncpy(ephem.epoch , "20", 2); // vorausgesetzt 21.Jhd; Datum steht auch im Header
|
||
|
strncpy(ephem.epoch+2, str, 15);
|
||
|
ephem.epoch[16] = '\0';
|
||
|
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.af0 = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.af1 = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.af2 = dbl;
|
||
|
while ((c=fgetc(fp)) != '\n') { if (c == EOF) break; }
|
||
|
|
||
|
l = fread(buf, 3, 1, fp); if (l != 1) break; buf[ 3] = 0;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); //ephem.iode = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.crs = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.delta_n = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.M0 = dbl;
|
||
|
while ((c=fgetc(fp)) != '\n') { if (c == EOF) break; }
|
||
|
|
||
|
l = fread(buf, 3, 1, fp); if (l != 1) break; buf[ 3] = 0;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.cuc = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.e = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.cus = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.sqrta = dbl;
|
||
|
while ((c=fgetc(fp)) != '\n') { if (c == EOF) break; }
|
||
|
|
||
|
l = fread(buf, 3, 1, fp); if (l != 1) break; buf[ 3] = 0;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.toe = dbl;
|
||
|
ephem.toc = ephem.toe;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.cic = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.Omega0 = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.cis = dbl;
|
||
|
while ((c=fgetc(fp)) != '\n') { if (c == EOF) break; }
|
||
|
|
||
|
l = fread(buf, 3, 1, fp); if (l != 1) break; buf[ 3] = 0;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.i0 = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.crc = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.w = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.OmegaDot = dbl;
|
||
|
while ((c=fgetc(fp)) != '\n') { if (c == EOF) break; }
|
||
|
|
||
|
l = fread(buf, 3, 1, fp); if (l != 1) break; buf[ 3] = 0;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.idot = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); //ephem.codeL2 = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.gpsweek = (int)dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); //ephem.iodc = dbl;
|
||
|
while ((c=fgetc(fp)) != '\n') { if (c == EOF) break; }
|
||
|
|
||
|
l = fread(buf, 3, 1, fp); if (l != 1) break; buf[ 3] = 0;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); //ephem.sva = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.health = (uint8_t)(dbl+0.1);
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); ephem.tgd = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); //ephem.iodc = dbl;
|
||
|
while ((c=fgetc(fp)) != '\n') { if (c == EOF) break; }
|
||
|
|
||
|
l = fread(buf, 3, 1, fp); if (l != 1) break; buf[ 3] = 0;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); //ephem.ttom = dbl;
|
||
|
String l = fp.readStringUntil('\n');
|
||
|
/* // die letzten beiden Felder (spare) sind manchmal leer (statt 0.00); manchmal fehlt sogar das drittletzte Feld
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); //ephem.fit = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); //ephem.spare1 = dbl;
|
||
|
l = fread(buf, 19, 1, fp); if (l != 1) break; if (buf[15] == 'D') buf[15] = 'E'; buf[19] = 0; sscanf(buf, "%lf", &dbl); //ephem.spare2 = dbl;
|
||
|
while ((c=fgetc(fp)) != '\n') { if (c == EOF) break; } */
|
||
|
|
||
|
ephem.week = 1; // ephem.gpsweek
|
||
|
//Serial.printf("Reading ephem for prn %d\n", ui);
|
||
|
if(ui<33) {
|
||
|
#if 0
|
||
|
// no need to do it the difficult way, most recent data is at end of file :-)
|
||
|
double tdiff;
|
||
|
if(te[ui].prn!=ui) {
|
||
|
tdiff = WEEKSEC;
|
||
|
} else {
|
||
|
tdiff = now - te[ui].toe;
|
||
|
if(tdiff>WEEKSEC/2) tdiff -= WEEKSEC;
|
||
|
if(tdiff<-WEEKSEC/2) tdiff += WEEKSEC;
|
||
|
}
|
||
|
double td = now - ephem.toe;
|
||
|
if(td>WEEKSEC/2) td -= WEEKSEC;
|
||
|
if(td<-WEEKSEC/2) td += WEEKSEC;
|
||
|
#endif
|
||
|
te[ui] = ephem;
|
||
|
} else {
|
||
|
Serial.printf("bad prn: %d\n", ui);
|
||
|
}
|
||
|
//if (pbuf == NULL) break;
|
||
|
if(!fp.available()) break;
|
||
|
}
|
||
|
te[33].prn=0;
|
||
|
return te;
|
||
|
}
|
||
|
|
||
|
/* ---------------------------------------------------------------------------------------------------- */
|
||
|
//
|
||
|
// Satellite Position
|
||
|
//
|
||
|
|
||
|
void GPS_SatelliteClockCorrection(
|
||
|
const unsigned short transmission_gpsweek, // GPS week when signal was transmit (0-1024+) [weeks]
|
||
|
const double transmission_gpstow, // GPS time of week when signal was transmit [s]
|
||
|
const unsigned short ephem_week, // ephemeris: GPS week (0-1024+) [weeks]
|
||
|
const double toe, // ephemeris: time of week [s]
|
||
|
const double toc, // ephemeris: clock reference time of week [s]
|
||
|
const double af0, // ephemeris: polynomial clock correction coefficient [s],
|
||
|
const double af1, // ephemeris: polynomial clock correction coefficient [s/s],
|
||
|
const double af2, // ephemeris: polynomial clock correction coefficient [s/s^2]
|
||
|
const double ecc, // ephemeris: eccentricity of satellite orbit []
|
||
|
const double sqrta, // ephemeris: square root of the semi-major axis of orbit [m^(1/2)]
|
||
|
const double delta_n, // ephemeris: mean motion difference from computed value [rad]
|
||
|
const double m0, // ephemeris: mean anomaly at reference time [rad]
|
||
|
const double tgd, // ephemeris: group delay differential between L1 and L2 [s]
|
||
|
double* clock_correction ) // ephemeris: satellite clock correction [m]
|
||
|
{
|
||
|
int j;
|
||
|
|
||
|
double tot; // time of transmission (including gps week) [s]
|
||
|
double tk; // time from ephemeris reference epoch [s]
|
||
|
double tc; // time from clock reference epoch [s]
|
||
|
double d_tr; // relativistic correction term [s]
|
||
|
double d_tsv; // SV PRN code phase time offset [s]
|
||
|
double a; // semi-major axis of orbit [m]
|
||
|
double n; // corrected mean motion [rad/s]
|
||
|
double M; // mean anomaly, [rad]
|
||
|
double E; // eccentric anomaly [rad]
|
||
|
|
||
|
// compute the times from the reference epochs
|
||
|
tot = transmission_gpsweek*SECONDS_IN_WEEK + transmission_gpstow;
|
||
|
tk = tot - (ephem_week*SECONDS_IN_WEEK + toe);
|
||
|
tc = tot - (ephem_week*SECONDS_IN_WEEK + toc);
|
||
|
|
||
|
// compute the corrected mean motion term
|
||
|
a = sqrta*sqrta;
|
||
|
n = sqrt( GRAVITY_CONSTANT / (a*a*a) ); // mean motion
|
||
|
n += delta_n; // corrected mean motion
|
||
|
|
||
|
// Kepler-Gleichung M = E - e sin(E)
|
||
|
M = m0 + n*tk; // mean anomaly
|
||
|
E = M; // f(E) = M + e sin(E) hat Fixpunkt fuer e < 1,
|
||
|
for( j = 0; j < 7; j++ ) { // da |f'(E)|=|e cos(E)|<1.
|
||
|
E = M + ecc * sin(E); // waehle Startwert E_1 = M, E_{k+1} = f(E_k)
|
||
|
} // konvergiert langsam gegen E_0 = f(E_0)
|
||
|
|
||
|
// relativistic correction
|
||
|
d_tr = RELATIVISTIC_CLOCK_CORRECTION * ecc * sqrta * sin(E); // [s]
|
||
|
d_tr *= LIGHTSPEED;
|
||
|
|
||
|
// clock correction
|
||
|
d_tsv = af0 + af1*tc + af2*tc*tc; // [s]
|
||
|
|
||
|
// L1 only
|
||
|
d_tsv -= tgd; // [s]
|
||
|
|
||
|
// clock correction
|
||
|
*clock_correction = d_tsv*LIGHTSPEED + d_tr; // [m]
|
||
|
|
||
|
}
|
||
|
|
||
|
void GPS_ComputeSatellitePosition(
|
||
|
const unsigned short transmission_gpsweek, // GPS week when signal was transmit (0-1024+) [weeks]
|
||
|
const double transmission_gpstow, // GPS time of week when signal was transmit [s]
|
||
|
const unsigned short ephem_week, // ephemeris: GPS week (0-1024+) [weeks]
|
||
|
const double toe, // ephemeris: time of week [s]
|
||
|
const double m0, // ephemeris: mean anomaly at reference time [rad]
|
||
|
const double delta_n, // ephemeris: mean motion difference from computed value [rad]
|
||
|
const double ecc, // ephemeris: eccentricity []
|
||
|
const double sqrta, // ephemeris: square root of the semi-major axis [m^(1/2)]
|
||
|
const double omega0, // ephemeris: longitude of ascending node of orbit plane at weekly epoch [rad]
|
||
|
const double i0, // ephemeris: inclination angle at reference time [rad]
|
||
|
const double w, // ephemeris: argument of perigee [rad]
|
||
|
const double omegadot, // ephemeris: rate of right ascension [rad/s]
|
||
|
const double idot, // ephemeris: rate of inclination angle [rad/s]
|
||
|
const double cuc, // ephemeris: cos harmonic correction term to the argument of latitude [rad]
|
||
|
const double cus, // ephemeris: sin harmonic correction term to the argument of latitude [rad]
|
||
|
const double crc, // ephemeris: cos harmonic correction term to the orbit radius [m]
|
||
|
const double crs, // ephemeris: sin harmonic correction term to the orbit radius [m]
|
||
|
const double cic, // ephemeris: cos harmonic correction term to the angle of inclination [rad]
|
||
|
const double cis, // ephemeris: sin harmonic correction term to the angle of inclination [rad]
|
||
|
double* x, // satellite x [m]
|
||
|
double* y, // satellite y [m]
|
||
|
double* z ) // satellite z [m]
|
||
|
{
|
||
|
int j;
|
||
|
|
||
|
double tot; // time of transmission (including gps week) [s]
|
||
|
double tk; // time from ephemeris reference epoch [s]
|
||
|
double a; // semi-major axis of orbit [m]
|
||
|
double n; // corrected mean motion [rad/s]
|
||
|
double M; // mean anomaly, [rad]
|
||
|
double E; // eccentric anomaly [rad]
|
||
|
double v; // true anomaly [rad]
|
||
|
double u; // argument of latitude, corrected [rad]
|
||
|
double r; // radius in the orbital plane [m]
|
||
|
double i; // orbital inclination [rad]
|
||
|
double cos2u; // cos(2*u) []
|
||
|
double sin2u; // sin(2*u) []
|
||
|
double d_u; // argument of latitude correction [rad]
|
||
|
double d_r; // radius correction [m]
|
||
|
double d_i; // inclination correction [rad]
|
||
|
double x_op; // x position in the orbital plane [m]
|
||
|
double y_op; // y position in the orbital plane [m]
|
||
|
double omegak; // corrected longitude of the ascending node [rad]
|
||
|
double cos_omegak; // cos(omegak)
|
||
|
double sin_omegak; // sin(omegak)
|
||
|
double cosu; // cos(u)
|
||
|
double sinu; // sin(u)
|
||
|
double cosi; // cos(i)
|
||
|
double sini; // sin(i)
|
||
|
double cosE; // cos(E)
|
||
|
double sinE; // sin(E)
|
||
|
|
||
|
|
||
|
// compute the times from the reference epochs
|
||
|
tot = transmission_gpsweek*SECONDS_IN_WEEK + transmission_gpstow;
|
||
|
tk = tot - (ephem_week*SECONDS_IN_WEEK + toe);
|
||
|
|
||
|
// compute the corrected mean motion term
|
||
|
a = sqrta*sqrta;
|
||
|
n = sqrt( GRAVITY_CONSTANT / (a*a*a) ); // computed mean motion
|
||
|
n += delta_n; // corrected mean motion
|
||
|
|
||
|
// Kepler-Gleichung M = E - e sin(E)
|
||
|
M = m0 + n*tk; // mean anomaly
|
||
|
E = M; // f(E) = M + e sin(E) hat Fixpunkt fuer e < 1,
|
||
|
for( j = 0; j < 7; j++ ) { // da |f'(E)|=|e cos(E)|<1.
|
||
|
E = M + ecc * sin(E); // waehle Startwert E_1 = M, E_{k+1} = f(E_k)
|
||
|
} // konvergiert langsam gegen E_0 = f(E_0)
|
||
|
|
||
|
cosE = cos(E);
|
||
|
sinE = sin(E);
|
||
|
|
||
|
// true anomaly
|
||
|
v = atan2( (sqrt(1.0 - ecc*ecc)*sinE), (cosE - ecc) );
|
||
|
// argument of latitude
|
||
|
u = v + w;
|
||
|
// radius in orbital plane
|
||
|
r = a * (1.0 - ecc * cos(E));
|
||
|
// orbital inclination
|
||
|
i = i0;
|
||
|
|
||
|
// second harmonic perturbations
|
||
|
//
|
||
|
cos2u = cos(2.0*u);
|
||
|
sin2u = sin(2.0*u);
|
||
|
// argument of latitude correction
|
||
|
d_u = cuc * cos2u + cus * sin2u;
|
||
|
// radius correction
|
||
|
d_r = crc * cos2u + crs * sin2u;
|
||
|
// correction to inclination
|
||
|
d_i = cic * cos2u + cis * sin2u;
|
||
|
|
||
|
// corrected argument of latitude
|
||
|
u += d_u;
|
||
|
// corrected radius
|
||
|
r += d_r;
|
||
|
// corrected inclination
|
||
|
i += d_i + idot * tk;
|
||
|
|
||
|
// positions in orbital plane
|
||
|
cosu = cos(u);
|
||
|
sinu = sin(u);
|
||
|
x_op = r * cosu;
|
||
|
y_op = r * sinu;
|
||
|
|
||
|
|
||
|
omegak = omega0 + omegadot*tk - EARTH_ROTATION_RATE*(tk + toe);
|
||
|
// fuer Bestimmung der Satellitenposition in ECEF, range=0;
|
||
|
// fuer GPS-Loesung (Sats in ECI) Erdrotation hinzuziehen:
|
||
|
// rotZ(EARTH_ROTATION_RATE*0.072), 0.072s*299792458m/s=21585057m
|
||
|
|
||
|
// compute the WGS84 ECEF coordinates,
|
||
|
// vector r with components x & y is now rotated using, R3(-omegak)*R1(-i)
|
||
|
cos_omegak = cos(omegak);
|
||
|
sin_omegak = sin(omegak);
|
||
|
cosi = cos(i);
|
||
|
sini = sin(i);
|
||
|
|
||
|
*x = x_op * cos_omegak - y_op * sin_omegak * cosi;
|
||
|
*y = x_op * sin_omegak + y_op * cos_omegak * cosi;
|
||
|
*z = y_op * sini;
|
||
|
|
||
|
}
|
||
|
|
||
|
void GPS_SatellitePosition_Ephem(
|
||
|
const unsigned short gpsweek, // gps week of signal transmission (0-1024+) [week]
|
||
|
const double gpstow, // time of week of signal transmission (gpstow-psr/c) [s]
|
||
|
EPHEM_t ephem,
|
||
|
double* clock_correction, // clock correction for this satellite for this epoch [m]
|
||
|
double* satX, // satellite X position WGS84 ECEF [m]
|
||
|
double* satY, // satellite Y position WGS84 ECEF [m]
|
||
|
double* satZ // satellite Z position WGS84 ECEF [m]
|
||
|
)
|
||
|
{
|
||
|
double tow; // user time of week adjusted with the clock corrections [s]
|
||
|
double x; // sat X position [m]
|
||
|
double y; // sat Y position [m]
|
||
|
double z; // sat Z position [m]
|
||
|
unsigned short week; // user week adjusted with the clock correction if needed [week]
|
||
|
|
||
|
|
||
|
x = y = z = 0.0;
|
||
|
|
||
|
GPS_SatelliteClockCorrection( gpsweek, gpstow,
|
||
|
ephem.week, ephem.toe, ephem.toc, ephem.af0,
|
||
|
ephem.af1, ephem.af2, ephem.e, ephem.sqrta,
|
||
|
ephem.delta_n, ephem.M0, ephem.tgd, clock_correction );
|
||
|
|
||
|
|
||
|
// adjust for week rollover
|
||
|
week = gpsweek;
|
||
|
tow = gpstow + (*clock_correction)/LIGHTSPEED;
|
||
|
if ( tow < 0.0 ) {
|
||
|
tow += SECONDS_IN_WEEK;
|
||
|
week--;
|
||
|
}
|
||
|
if ( tow > SECONDS_IN_WEEK ) {
|
||
|
tow -= SECONDS_IN_WEEK;
|
||
|
week++;
|
||
|
}
|
||
|
|
||
|
//range = 0.072s*299792458m/s=21585057m
|
||
|
GPS_ComputeSatellitePosition( week, tow,
|
||
|
ephem.week, ephem.toe, ephem.M0, ephem.delta_n, ephem.e, ephem.sqrta,
|
||
|
ephem.Omega0, ephem.i0, ephem.w, ephem.OmegaDot, ephem.idot,
|
||
|
ephem.cuc, ephem.cus, ephem.crc, ephem.crs, ephem.cic, ephem.cis,
|
||
|
&x, &y, &z );
|
||
|
|
||
|
*satX = x;
|
||
|
*satY = y;
|
||
|
*satZ = z;
|
||
|
|
||
|
}
|
||
|
|
||
|
/* ---------------------------------------------------------------------------------------------------- */
|
||
|
|
||
|
|
||
|
int NAV_ClosedFormSolution_FromPseudorange(
|
||
|
SAT_t sats[4], // input: satellite position and pseudorange
|
||
|
double* latitude, // output: ellipsoid latitude [rad]
|
||
|
double* longitude, // ellipsoid longitude [rad]
|
||
|
double* height, // ellipsoid height [m]
|
||
|
double* rx_clock_bias, // receiver clock bias [m]
|
||
|
double pos_ecef[3] ) // ECEF coordinates [m]
|
||
|
{
|
||
|
|
||
|
double p1 = sats[0].pseudorange + sats[0].clock_corr; // pseudorange measurement + clock correction [m]
|
||
|
double p2 = sats[1].pseudorange + sats[1].clock_corr;
|
||
|
double p3 = sats[2].pseudorange + sats[2].clock_corr;
|
||
|
double p4 = sats[3].pseudorange + sats[3].clock_corr;
|
||
|
|
||
|
double x1, y1, z1; // Sat1 ECEF
|
||
|
double x2, y2, z2; // Sat2 ECEF
|
||
|
double x3, y3, z3; // Sat3 ECEF
|
||
|
double x4, y4, z4; // Sat4 ECEF
|
||
|
|
||
|
// Erdrotation ECEF-ECI, 0.070s*299792458m/s=20985472m, 0.072s*299792458m/s=21585057m
|
||
|
rotZ(sats[0].X, sats[0].Y, sats[0].Z, EARTH_ROTATION_RATE*RANGE_ESTIMATE, &x1, &y1, &z1);
|
||
|
rotZ(sats[1].X, sats[1].Y, sats[1].Z, EARTH_ROTATION_RATE*RANGE_ESTIMATE, &x2, &y2, &z2);
|
||
|
rotZ(sats[2].X, sats[2].Y, sats[2].Z, EARTH_ROTATION_RATE*RANGE_ESTIMATE, &x3, &y3, &z3);
|
||
|
rotZ(sats[3].X, sats[3].Y, sats[3].Z, EARTH_ROTATION_RATE*RANGE_ESTIMATE, &x4, &y4, &z4);
|
||
|
|
||
|
|
||
|
double x12, x13, x14; // 'xij' = 'xi' - 'xj' [m]
|
||
|
double y12, y13, y14;
|
||
|
double z12, z13, z14;
|
||
|
double p21, p31, p41; // 'pij' = 'pi' - 'pj' [m]
|
||
|
|
||
|
double k1, k2, k3; // coefficients
|
||
|
double c1, c2, c3;
|
||
|
double f1, f2, f3;
|
||
|
double m1, m2, m3;
|
||
|
|
||
|
double d1; // clock bias, solution 1 [m]
|
||
|
double d2; // clock bias, solution 2 [m]
|
||
|
double detA; // determinant of A
|
||
|
double tmp1;
|
||
|
double tmp2;
|
||
|
double tmp3;
|
||
|
|
||
|
double A[3][3];
|
||
|
double D[3][3]; // D is A^-1 * detA
|
||
|
|
||
|
typedef struct {
|
||
|
double x;
|
||
|
double y;
|
||
|
double z;
|
||
|
} struct_SOLN;
|
||
|
|
||
|
struct_SOLN s1;
|
||
|
struct_SOLN s2;
|
||
|
|
||
|
struct_SOLN stmp;
|
||
|
double dtmp;
|
||
|
double x0, y0, z0;
|
||
|
double latS, lonS, altS,
|
||
|
lat1, lon1, alt1,
|
||
|
lat2, lon2, alt2;
|
||
|
double d2_1, d2_2;
|
||
|
|
||
|
|
||
|
x12 = x1 - x2;
|
||
|
x13 = x1 - x3;
|
||
|
x14 = x1 - x4;
|
||
|
|
||
|
y12 = y1 - y2;
|
||
|
y13 = y1 - y3;
|
||
|
y14 = y1 - y4;
|
||
|
|
||
|
z12 = z1 - z2;
|
||
|
z13 = z1 - z3;
|
||
|
z14 = z1 - z4;
|
||
|
|
||
|
p21 = p2 - p1;
|
||
|
p31 = p3 - p1;
|
||
|
p41 = p4 - p1;
|
||
|
|
||
|
k1 = x12*x12 + y12*y12 + z12*z12 - p21*p21;
|
||
|
k2 = x13*x13 + y13*y13 + z13*z13 - p31*p31;
|
||
|
k3 = x14*x14 + y14*y14 + z14*z14 - p41*p41;
|
||
|
|
||
|
A[0][0] = 2.0*x12;
|
||
|
A[1][0] = 2.0*x13;
|
||
|
A[2][0] = 2.0*x14;
|
||
|
|
||
|
A[0][1] = 2.0*y12;
|
||
|
A[1][1] = 2.0*y13;
|
||
|
A[2][1] = 2.0*y14;
|
||
|
|
||
|
A[0][2] = 2.0*z12;
|
||
|
A[1][2] = 2.0*z13;
|
||
|
A[2][2] = 2.0*z14;
|
||
|
|
||
|
tmp1 = A[1][1]*A[2][2] - A[2][1]*A[1][2];
|
||
|
tmp2 = A[1][0]*A[2][2] - A[2][0]*A[1][2];
|
||
|
tmp3 = A[1][0]*A[2][1] - A[2][0]*A[1][1];
|
||
|
|
||
|
detA = A[0][0]*tmp1 - A[0][1]*tmp2 + A[0][2]*tmp3;
|
||
|
|
||
|
D[0][0] = tmp1;
|
||
|
D[1][0] = -tmp2;
|
||
|
D[2][0] = tmp3;
|
||
|
|
||
|
D[0][1] = -A[0][1]*A[2][2] + A[2][1]*A[0][2];
|
||
|
D[1][1] = A[0][0]*A[2][2] - A[2][0]*A[0][2];
|
||
|
D[2][1] = -A[0][0]*A[2][1] + A[2][0]*A[0][1];
|
||
|
|
||
|
D[0][2] = A[0][1]*A[1][2] - A[1][1]*A[0][2];
|
||
|
D[1][2] = -A[0][0]*A[1][2] + A[1][0]*A[0][2];
|
||
|
D[2][2] = A[0][0]*A[1][1] - A[1][0]*A[0][1];
|
||
|
|
||
|
c1 = (D[0][0]*p21 + D[0][1]*p31 + D[0][2]*p41) * 2.0 / detA;
|
||
|
c2 = (D[1][0]*p21 + D[1][1]*p31 + D[1][2]*p41) * 2.0 / detA;
|
||
|
c3 = (D[2][0]*p21 + D[2][1]*p31 + D[2][2]*p41) * 2.0 / detA;
|
||
|
|
||
|
f1 = (D[0][0]*k1 + D[0][1]*k2 + D[0][2]*k3) / detA;
|
||
|
f2 = (D[1][0]*k1 + D[1][1]*k2 + D[1][2]*k3) / detA;
|
||
|
f3 = (D[2][0]*k1 + D[2][1]*k2 + D[2][2]*k3) / detA;
|
||
|
|
||
|
m1 = c1*c1 + c2*c2 + c3*c3 - 1.0;
|
||
|
m2 = -2.0*( c1*f1 + c2*f2 + c3*f3 );
|
||
|
m3 = f1*f1 + f2*f2 + f3*f3;
|
||
|
|
||
|
tmp1 = m2*m2 - 4.0*m1*m3;
|
||
|
if ( tmp1 < 0 ) { // not good, there is no solution
|
||
|
return -1; //FALSE
|
||
|
}
|
||
|
|
||
|
d1 = ( -m2 - sqrt( tmp1 ) ) * 0.5 / m1; // +-Reihenfolge vertauscht
|
||
|
d2 = ( -m2 + sqrt( tmp1 ) ) * 0.5 / m1;
|
||
|
|
||
|
// two solutions
|
||
|
s1.x = c1*d1 - f1 + x1;
|
||
|
s1.y = c2*d1 - f2 + y1;
|
||
|
s1.z = c3*d1 - f3 + z1;
|
||
|
|
||
|
s2.x = c1*d2 - f1 + x1;
|
||
|
s2.y = c2*d2 - f2 + y1;
|
||
|
s2.z = c3*d2 - f3 + z1;
|
||
|
|
||
|
tmp1 = sqrt( s1.x*s1.x + s1.y*s1.y + s1.z*s1.z );
|
||
|
tmp2 = sqrt( s2.x*s2.x + s2.y*s2.y + s2.z*s2.z );
|
||
|
|
||
|
// choose the correct solution based
|
||
|
// on whichever solution is closest to
|
||
|
// the Earth's surface
|
||
|
tmp1 = fabs( tmp1 - 6371000.0 );
|
||
|
tmp2 = fabs( tmp2 - 6371000.0 );
|
||
|
|
||
|
// nur (tmp2 < tmp1) geht manchmal schief
|
||
|
if ( tmp2 < tmp1 && tmp1 >= 60000 ) { // swap solutions
|
||
|
stmp = s1; s1 = s2; s2 = stmp; // s1 = s2;
|
||
|
dtmp = d1; d1 = d2; d2 = dtmp; // d1 = d2;
|
||
|
}
|
||
|
else if ( tmp2 < 60000 ) { // interessant wenn tmp1<tmp2<60k oder tmp2<tmp1<60k,
|
||
|
x0 = (x1+x2+x3+x4)/4.0; // d.h. beide Werte nahe Erdoberflaeche;
|
||
|
y0 = (y1+y2+y3+y4)/4.0; // ungefaehre Position kann aus den Positionen
|
||
|
z0 = (z1+z2+z3+z4)/4.0; // der empfangenen Sats abgeleitet werden
|
||
|
ecef2elli( x0, y0, z0, &latS, &lonS, &altS );
|
||
|
|
||
|
ecef2elli( s1.x, s1.y, s1.z, &lat1, &lon1, &alt1 );
|
||
|
ecef2elli( s2.x, s2.y, s2.z, &lat2, &lon2, &alt2 );
|
||
|
|
||
|
d2_1 = sqrt( (latS-lat1)*(latS-lat1) + (lonS-lon1)*(lonS-lon1) );
|
||
|
d2_2 = sqrt( (latS-lat2)*(latS-lat2) + (lonS-lon2)*(lonS-lon2) );
|
||
|
|
||
|
if ( d2_2 < d2_1 ) {
|
||
|
stmp = s1; s1 = s2; s2 = stmp; // s1 = s2;
|
||
|
dtmp = d1; d1 = d2; d2 = dtmp; // d1 = d2;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ecef2elli( s1.x, s1.y, s1.z, &lat1, &lon1, &alt1 );
|
||
|
|
||
|
*latitude = lat1;
|
||
|
*longitude = lon1;
|
||
|
*height = alt1;
|
||
|
|
||
|
*rx_clock_bias = d1;
|
||
|
|
||
|
pos_ecef[0] = s1.x;
|
||
|
pos_ecef[1] = s1.y;
|
||
|
pos_ecef[2] = s1.z;
|
||
|
|
||
|
if( *height < -1500.0 || *height > 50000.0 ) {
|
||
|
return -2;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* ---------------------------------------------------------------------------------------------------- */
|
||
|
|
||
|
|
||
|
int trace_invert(double mat[4][4], double trinv[4]) // trace-invert
|
||
|
/* selected elements from 4x4 matrix inversion */
|
||
|
{
|
||
|
// Find all NECESSARY 2x2 subdeterminants
|
||
|
double Det2_12_01 = mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0];
|
||
|
double Det2_12_02 = mat[1][0] * mat[2][2] - mat[1][2] * mat[2][0];
|
||
|
//double Det2_12_03 = mat[1][0]*mat[2][3] - mat[1][3]*mat[2][0];
|
||
|
double Det2_12_12 = mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1];
|
||
|
//double Det2_12_13 = mat[1][1]*mat[2][3] - mat[1][3]*mat[2][1];
|
||
|
//double Det2_12_23 = mat[1][2]*mat[2][3] - mat[1][3]*mat[2][2];
|
||
|
double Det2_13_01 = mat[1][0] * mat[3][1] - mat[1][1] * mat[3][0];
|
||
|
//double Det2_13_02 = mat[1][0]*mat[3][2] - mat[1][2]*mat[3][0];
|
||
|
double Det2_13_03 = mat[1][0] * mat[3][3] - mat[1][3] * mat[3][0];
|
||
|
//double Det2_13_12 = mat[1][1]*mat[3][2] - mat[1][2]*mat[3][1];
|
||
|
double Det2_13_13 = mat[1][1] * mat[3][3] - mat[1][3] * mat[3][1];
|
||
|
//double Det2_13_23 = mat[1][2]*mat[3][3] - mat[1][3]*mat[3][2];
|
||
|
double Det2_23_01 = mat[2][0] * mat[3][1] - mat[2][1] * mat[3][0];
|
||
|
double Det2_23_02 = mat[2][0] * mat[3][2] - mat[2][2] * mat[3][0];
|
||
|
double Det2_23_03 = mat[2][0] * mat[3][3] - mat[2][3] * mat[3][0];
|
||
|
double Det2_23_12 = mat[2][1] * mat[3][2] - mat[2][2] * mat[3][1];
|
||
|
double Det2_23_13 = mat[2][1] * mat[3][3] - mat[2][3] * mat[3][1];
|
||
|
double Det2_23_23 = mat[2][2] * mat[3][3] - mat[2][3] * mat[3][2];
|
||
|
|
||
|
// Find all NECESSARY 3x3 subdeterminants
|
||
|
double Det3_012_012 = mat[0][0] * Det2_12_12 - mat[0][1] * Det2_12_02 + mat[0][2] * Det2_12_01;
|
||
|
//double Det3_012_013 = mat[0][0]*Det2_12_13 - mat[0][1]*Det2_12_03 + mat[0][3]*Det2_12_01;
|
||
|
//double Det3_012_023 = mat[0][0]*Det2_12_23 - mat[0][2]*Det2_12_03 + mat[0][3]*Det2_12_02;
|
||
|
//double Det3_012_123 = mat[0][1]*Det2_12_23 - mat[0][2]*Det2_12_13 + mat[0][3]*Det2_12_12;
|
||
|
//double Det3_013_012 = mat[0][0]*Det2_13_12 - mat[0][1]*Det2_13_02 + mat[0][2]*Det2_13_01;
|
||
|
double Det3_013_013 = mat[0][0] * Det2_13_13 - mat[0][1] * Det2_13_03 + mat[0][3] * Det2_13_01;
|
||
|
//double Det3_013_023 = mat[0][0]*Det2_13_23 - mat[0][2]*Det2_13_03 + mat[0][3]*Det2_13_02;
|
||
|
//double Det3_013_123 = mat[0][1]*Det2_13_23 - mat[0][2]*Det2_13_13 + mat[0][3]*Det2_13_12;
|
||
|
//double Det3_023_012 = mat[0][0]*Det2_23_12 - mat[0][1]*Det2_23_02 + mat[0][2]*Det2_23_01;
|
||
|
//double Det3_023_013 = mat[0][0]*Det2_23_13 - mat[0][1]*Det2_23_03 + mat[0][3]*Det2_23_01;
|
||
|
double Det3_023_023 = mat[0][0] * Det2_23_23 - mat[0][2] * Det2_23_03 + mat[0][3] * Det2_23_02;
|
||
|
//double Det3_023_123 = mat[0][1]*Det2_23_23 - mat[0][2]*Det2_23_13 + mat[0][3]*Det2_23_12;
|
||
|
double Det3_123_012 = mat[1][0] * Det2_23_12 - mat[1][1] * Det2_23_02 + mat[1][2] * Det2_23_01;
|
||
|
double Det3_123_013 = mat[1][0] * Det2_23_13 - mat[1][1] * Det2_23_03 + mat[1][3] * Det2_23_01;
|
||
|
double Det3_123_023 = mat[1][0] * Det2_23_23 - mat[1][2] * Det2_23_03 + mat[1][3] * Det2_23_02;
|
||
|
double Det3_123_123 = mat[1][1] * Det2_23_23 - mat[1][2] * Det2_23_13 + mat[1][3] * Det2_23_12;
|
||
|
|
||
|
// Find the 4x4 determinant
|
||
|
static double det;
|
||
|
det = mat[0][0] * Det3_123_123
|
||
|
- mat[0][1] * Det3_123_023
|
||
|
+ mat[0][2] * Det3_123_013
|
||
|
- mat[0][3] * Det3_123_012;
|
||
|
|
||
|
// Very small determinants probably reflect floating-point fuzz near zero
|
||
|
if (fabs(det) < 0.0001)
|
||
|
return -1;
|
||
|
|
||
|
//inv[0][0] = Det3_123_123 / det;
|
||
|
//inv[0][1] = -Det3_023_123 / det;
|
||
|
//inv[0][2] = Det3_013_123 / det;
|
||
|
//inv[0][3] = -Det3_012_123 / det;
|
||
|
|
||
|
//inv[1][0] = -Det3_123_023 / det;
|
||
|
//inv[1][1] = Det3_023_023 / det;
|
||
|
//inv[1][2] = -Det3_013_023 / det;
|
||
|
//inv[1][3] = Det3_012_023 / det;
|
||
|
|
||
|
//inv[2][0] = Det3_123_013 / det;
|
||
|
//inv[2][1] = -Det3_023_013 / det;
|
||
|
//inv[2][2] = Det3_013_013 / det;
|
||
|
//inv[2][3] = -Det3_012_013 / det;
|
||
|
|
||
|
//inv[3][0] = -Det3_123_012 / det;
|
||
|
//inv[3][1] = Det3_023_012 / det;
|
||
|
//inv[3][2] = -Det3_013_012 / det;
|
||
|
//inv[3][3] = Det3_012_012 / det;
|
||
|
|
||
|
trinv[0] = Det3_123_123 / det;
|
||
|
|
||
|
trinv[1] = Det3_023_023 / det;
|
||
|
trinv[2] = Det3_013_013 / det;
|
||
|
trinv[3] = Det3_012_012 / det;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int calc_DOPn(int n, SAT_t satss[], double pos_ecef[3], double DOP[4]) {
|
||
|
int i, j, k;
|
||
|
double norm[n], satpos[n][3];
|
||
|
double SATS[n][4], AtA[4][4];
|
||
|
|
||
|
for (i = 0; i < n; i++) {
|
||
|
satpos[i][0] = satss[i].X-pos_ecef[0];
|
||
|
satpos[i][1] = satss[i].Y-pos_ecef[1];
|
||
|
satpos[i][2] = satss[i].Z-pos_ecef[2];
|
||
|
}
|
||
|
|
||
|
|
||
|
for (i = 0; i < n; i++) {
|
||
|
norm[i] = sqrt( satpos[i][0]*satpos[i][0] + satpos[i][1]*satpos[i][1] + satpos[i][2]*satpos[i][2] );
|
||
|
for (j = 0; j < 3; j++) {
|
||
|
SATS[i][j] = satpos[i][j] / norm[i];
|
||
|
}
|
||
|
SATS[i][3] = 1;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
for (j = 0; j < 4; j++) {
|
||
|
AtA[i][j] = 0.0;
|
||
|
for (k = 0; k < n; k++) {
|
||
|
AtA[i][j] += SATS[k][i]*SATS[k][j];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return trace_invert(AtA, DOP);
|
||
|
}
|
||
|
|
||
|
/* ---------------------------------------------------------------------------------------------------- */
|
||
|
|
||
|
int rotE(SAT_t sat, double *x, double *y, double *z) {
|
||
|
// Erdrotation ECEF-ECI, 0.070s*299792458m/s=20985472m, 0.072s*299792458m/s=21585057m
|
||
|
double range = sat.PR/LIGHTSPEED;
|
||
|
if (range < 19e6 || range > 30e6) range = 21e6;
|
||
|
rotZ(sat.X, sat.Y, sat.Z, EARTH_ROTATION_RATE*(range/LIGHTSPEED), x, y, z);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
double lorentz(double a[4], double b[4]) {
|
||
|
return a[0]*b[0] + a[1]*b[1] +a[2]*b[2] - a[3]*b[3];
|
||
|
}
|
||
|
|
||
|
int matrix_invert(double mat[4][4], double inv[4][4])
|
||
|
{
|
||
|
// 2x2 subdeterminants
|
||
|
double Det2_12_01 = mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0];
|
||
|
double Det2_12_02 = mat[1][0] * mat[2][2] - mat[1][2] * mat[2][0];
|
||
|
double Det2_12_03 = mat[1][0] * mat[2][3] - mat[1][3] * mat[2][0];
|
||
|
double Det2_12_12 = mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1];
|
||
|
double Det2_12_13 = mat[1][1] * mat[2][3] - mat[1][3] * mat[2][1];
|
||
|
double Det2_12_23 = mat[1][2] * mat[2][3] - mat[1][3] * mat[2][2];
|
||
|
double Det2_13_01 = mat[1][0] * mat[3][1] - mat[1][1] * mat[3][0];
|
||
|
double Det2_13_02 = mat[1][0] * mat[3][2] - mat[1][2] * mat[3][0];
|
||
|
double Det2_13_03 = mat[1][0] * mat[3][3] - mat[1][3] * mat[3][0];
|
||
|
double Det2_13_12 = mat[1][1] * mat[3][2] - mat[1][2] * mat[3][1];
|
||
|
double Det2_13_13 = mat[1][1] * mat[3][3] - mat[1][3] * mat[3][1];
|
||
|
double Det2_13_23 = mat[1][2] * mat[3][3] - mat[1][3] * mat[3][2];
|
||
|
double Det2_23_01 = mat[2][0] * mat[3][1] - mat[2][1] * mat[3][0];
|
||
|
double Det2_23_02 = mat[2][0] * mat[3][2] - mat[2][2] * mat[3][0];
|
||
|
double Det2_23_03 = mat[2][0] * mat[3][3] - mat[2][3] * mat[3][0];
|
||
|
double Det2_23_12 = mat[2][1] * mat[3][2] - mat[2][2] * mat[3][1];
|
||
|
double Det2_23_13 = mat[2][1] * mat[3][3] - mat[2][3] * mat[3][1];
|
||
|
double Det2_23_23 = mat[2][2] * mat[3][3] - mat[2][3] * mat[3][2];
|
||
|
|
||
|
// 3x3 subdeterminants
|
||
|
double Det3_012_012 = mat[0][0] * Det2_12_12 - mat[0][1] * Det2_12_02 + mat[0][2] * Det2_12_01;
|
||
|
double Det3_012_013 = mat[0][0] * Det2_12_13 - mat[0][1] * Det2_12_03 + mat[0][3] * Det2_12_01;
|
||
|
double Det3_012_023 = mat[0][0] * Det2_12_23 - mat[0][2] * Det2_12_03 + mat[0][3] * Det2_12_02;
|
||
|
double Det3_012_123 = mat[0][1] * Det2_12_23 - mat[0][2] * Det2_12_13 + mat[0][3] * Det2_12_12;
|
||
|
double Det3_013_012 = mat[0][0] * Det2_13_12 - mat[0][1] * Det2_13_02 + mat[0][2] * Det2_13_01;
|
||
|
double Det3_013_013 = mat[0][0] * Det2_13_13 - mat[0][1] * Det2_13_03 + mat[0][3] * Det2_13_01;
|
||
|
double Det3_013_023 = mat[0][0] * Det2_13_23 - mat[0][2] * Det2_13_03 + mat[0][3] * Det2_13_02;
|
||
|
double Det3_013_123 = mat[0][1] * Det2_13_23 - mat[0][2] * Det2_13_13 + mat[0][3] * Det2_13_12;
|
||
|
double Det3_023_012 = mat[0][0] * Det2_23_12 - mat[0][1] * Det2_23_02 + mat[0][2] * Det2_23_01;
|
||
|
double Det3_023_013 = mat[0][0] * Det2_23_13 - mat[0][1] * Det2_23_03 + mat[0][3] * Det2_23_01;
|
||
|
double Det3_023_023 = mat[0][0] * Det2_23_23 - mat[0][2] * Det2_23_03 + mat[0][3] * Det2_23_02;
|
||
|
double Det3_023_123 = mat[0][1] * Det2_23_23 - mat[0][2] * Det2_23_13 + mat[0][3] * Det2_23_12;
|
||
|
double Det3_123_012 = mat[1][0] * Det2_23_12 - mat[1][1] * Det2_23_02 + mat[1][2] * Det2_23_01;
|
||
|
double Det3_123_013 = mat[1][0] * Det2_23_13 - mat[1][1] * Det2_23_03 + mat[1][3] * Det2_23_01;
|
||
|
double Det3_123_023 = mat[1][0] * Det2_23_23 - mat[1][2] * Det2_23_03 + mat[1][3] * Det2_23_02;
|
||
|
double Det3_123_123 = mat[1][1] * Det2_23_23 - mat[1][2] * Det2_23_13 + mat[1][3] * Det2_23_12;
|
||
|
|
||
|
// 4x4 determinant
|
||
|
static double det;
|
||
|
det = mat[0][0] * Det3_123_123
|
||
|
- mat[0][1] * Det3_123_023
|
||
|
+ mat[0][2] * Det3_123_013
|
||
|
- mat[0][3] * Det3_123_012;
|
||
|
|
||
|
// Very small determinants probably reflect floating-point fuzz near zero
|
||
|
if (fabs(det) < 0.0001)
|
||
|
return -1;
|
||
|
|
||
|
inv[0][0] = Det3_123_123 / det;
|
||
|
inv[0][1] = -Det3_023_123 / det;
|
||
|
inv[0][2] = Det3_013_123 / det;
|
||
|
inv[0][3] = -Det3_012_123 / det;
|
||
|
|
||
|
inv[1][0] = -Det3_123_023 / det;
|
||
|
inv[1][1] = Det3_023_023 / det;
|
||
|
inv[1][2] = -Det3_013_023 / det;
|
||
|
inv[1][3] = Det3_012_023 / det;
|
||
|
|
||
|
inv[2][0] = Det3_123_013 / det;
|
||
|
inv[2][1] = -Det3_023_013 / det;
|
||
|
inv[2][2] = Det3_013_013 / det;
|
||
|
inv[2][3] = -Det3_012_013 / det;
|
||
|
|
||
|
inv[3][0] = -Det3_123_012 / det;
|
||
|
inv[3][1] = Det3_023_012 / det;
|
||
|
inv[3][2] = -Det3_013_012 / det;
|
||
|
inv[3][3] = Det3_012_012 / det;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int NAV_bancroft1(int N, SAT_t sats[], double pos_ecef[3], double *cc) {
|
||
|
|
||
|
int i, j, k;
|
||
|
double B[N][4], BtB[4][4], BBinv[4][4], BBB[4][N];
|
||
|
double a[N], Be[4], Ba[4];
|
||
|
|
||
|
double q0, q1, q2, p, q, sq, x1, x2;
|
||
|
double Lsg1[4], Lsg2[4];
|
||
|
|
||
|
double tmp1, tmp2;
|
||
|
double X, Y, Z;
|
||
|
|
||
|
|
||
|
if (N < 4 || N > 12) return -1;
|
||
|
|
||
|
for (i = 0; i < N; i++) {
|
||
|
rotZ(sats[i].X, sats[i].Y, sats[i].Z, EARTH_ROTATION_RATE*RANGE_ESTIMATE, B[i], B[i]+1, B[i]+2);
|
||
|
B[i][3] = sats[i].pseudorange + sats[i].clock_corr;
|
||
|
}
|
||
|
|
||
|
if (N == 4) {
|
||
|
matrix_invert(B, (double (*)[4]) BBB);
|
||
|
}
|
||
|
else {
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
for (j = 0; j < 4; j++) {
|
||
|
BtB[i][j] = 0.0;
|
||
|
for (k = 0; k < N; k++) {
|
||
|
BtB[i][j] += B[k][i]*B[k][j];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
matrix_invert(BtB, BBinv);
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
for (j = 0; j < N; j++) {
|
||
|
BBB[i][j] = 0.0;
|
||
|
for (k = 0; k < 4; k++) {
|
||
|
BBB[i][j] += BBinv[i][k]*B[j][k];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
Be[i] = 0.0;
|
||
|
for (k = 0; k < N; k++) {
|
||
|
Be[i] += BBB[i][k]*1.0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < N; i++) {
|
||
|
a[i] = 0.5 * lorentz(B[i], B[i]);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
Ba[i] = 0.0;
|
||
|
for (k = 0; k < N; k++) {
|
||
|
Ba[i] += BBB[i][k]*a[k];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
q2 = lorentz(Be, Be);
|
||
|
q1 = lorentz(Ba, Be)-1;
|
||
|
q0 = lorentz(Ba, Ba);
|
||
|
|
||
|
if (q2 == 0) return -2;
|
||
|
|
||
|
p = q1/q2;
|
||
|
q = q0/q2;
|
||
|
|
||
|
sq = p*p - q;
|
||
|
if (sq < 0) return -2;
|
||
|
|
||
|
x1 = -p + sqrt(sq);
|
||
|
x2 = -p - sqrt(sq);
|
||
|
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
Lsg1[i] = x1*Be[i]+Ba[i];
|
||
|
Lsg2[i] = x2*Be[i]+Ba[i];
|
||
|
}
|
||
|
Lsg1[3] = -Lsg1[3];
|
||
|
Lsg2[3] = -Lsg2[3];
|
||
|
|
||
|
|
||
|
tmp1 = sqrt( Lsg1[0]*Lsg1[0] + Lsg1[1]*Lsg1[1] + Lsg1[2]*Lsg1[2] );
|
||
|
tmp2 = sqrt( Lsg2[0]*Lsg2[0] + Lsg2[1]*Lsg2[1] + Lsg2[2]*Lsg2[2] );
|
||
|
|
||
|
tmp1 = fabs( tmp1 - 6371000.0 );
|
||
|
tmp2 = fabs( tmp2 - 6371000.0 );
|
||
|
|
||
|
if (tmp1 < tmp2) {
|
||
|
X = Lsg1[0]; Y = Lsg1[1]; Z = Lsg1[2]; *cc = Lsg1[3];
|
||
|
} else {
|
||
|
X = Lsg2[0]; Y = Lsg2[1]; Z = Lsg2[2]; *cc = Lsg2[3];
|
||
|
}
|
||
|
pos_ecef[0] = X;
|
||
|
pos_ecef[1] = Y;
|
||
|
pos_ecef[2] = Z;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int NAV_bancroft2(int N, SAT_t sats[], double pos_ecef[3], double *cc) {
|
||
|
|
||
|
int i, j, k;
|
||
|
double B[N][4], BtB[4][4], BBinv[4][4], BBB[4][N];
|
||
|
double a[N], Be[4], Ba[4];
|
||
|
|
||
|
double q0, q1, q2, p, q, sq, x1, x2;
|
||
|
double Lsg1[4], Lsg2[4];
|
||
|
|
||
|
double tmp1, tmp2;
|
||
|
double X, Y, Z;
|
||
|
|
||
|
|
||
|
if (N < 4 || N > 12) return -1;
|
||
|
|
||
|
for (i = 0; i < N; i++) {
|
||
|
rotE(sats[i], B[i], B[i]+1, B[i]+2);
|
||
|
B[i][3] = sats[i].PR;
|
||
|
}
|
||
|
|
||
|
if (N == 4) {
|
||
|
matrix_invert(B, (double (*)[4])BBB);
|
||
|
}
|
||
|
else {
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
for (j = 0; j < 4; j++) {
|
||
|
BtB[i][j] = 0.0;
|
||
|
for (k = 0; k < N; k++) {
|
||
|
BtB[i][j] += B[k][i]*B[k][j];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
matrix_invert(BtB, BBinv);
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
for (j = 0; j < N; j++) {
|
||
|
BBB[i][j] = 0.0;
|
||
|
for (k = 0; k < 4; k++) {
|
||
|
BBB[i][j] += BBinv[i][k]*B[j][k];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
Be[i] = 0.0;
|
||
|
for (k = 0; k < N; k++) {
|
||
|
Be[i] += BBB[i][k]*1.0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < N; i++) {
|
||
|
a[i] = 0.5 * lorentz(B[i], B[i]);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
Ba[i] = 0.0;
|
||
|
for (k = 0; k < N; k++) {
|
||
|
Ba[i] += BBB[i][k]*a[k];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
q2 = lorentz(Be, Be);
|
||
|
q1 = lorentz(Ba, Be)-1;
|
||
|
q0 = lorentz(Ba, Ba);
|
||
|
|
||
|
if (q2 == 0) return -2;
|
||
|
|
||
|
p = q1/q2;
|
||
|
q = q0/q2;
|
||
|
|
||
|
sq = p*p - q;
|
||
|
if (sq < 0) return -2;
|
||
|
|
||
|
x1 = -p + sqrt(sq);
|
||
|
x2 = -p - sqrt(sq);
|
||
|
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
Lsg1[i] = x1*Be[i]+Ba[i];
|
||
|
Lsg2[i] = x2*Be[i]+Ba[i];
|
||
|
}
|
||
|
Lsg1[3] = -Lsg1[3];
|
||
|
Lsg2[3] = -Lsg2[3];
|
||
|
|
||
|
|
||
|
tmp1 = sqrt( Lsg1[0]*Lsg1[0] + Lsg1[1]*Lsg1[1] + Lsg1[2]*Lsg1[2] );
|
||
|
tmp2 = sqrt( Lsg2[0]*Lsg2[0] + Lsg2[1]*Lsg2[1] + Lsg2[2]*Lsg2[2] );
|
||
|
|
||
|
tmp1 = fabs( tmp1 - 6371000.0 );
|
||
|
tmp2 = fabs( tmp2 - 6371000.0 );
|
||
|
|
||
|
if (tmp1 < tmp2) {
|
||
|
X = Lsg1[0]; Y = Lsg1[1]; Z = Lsg1[2]; *cc = Lsg1[3];
|
||
|
} else {
|
||
|
X = Lsg2[0]; Y = Lsg2[1]; Z = Lsg2[2]; *cc = Lsg2[3];
|
||
|
}
|
||
|
pos_ecef[0] = X;
|
||
|
pos_ecef[1] = Y;
|
||
|
pos_ecef[2] = Z;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* ---------------------------------------------------------------------------------------------------- */
|
||
|
|
||
|
int NAV_bancroft3(int N, SAT_t sats[], double pos_ecef1[3], double *cc1 , double pos_ecef2[3], double *cc2) {
|
||
|
|
||
|
int i, j, k;
|
||
|
double B[N][4], BtB[4][4], BBinv[4][4], BBB[4][N];
|
||
|
double a[N], Be[4], Ba[4];
|
||
|
|
||
|
double q0, q1, q2, p, q, sq, x1, x2;
|
||
|
double Lsg1[4], Lsg2[4];
|
||
|
|
||
|
double tmp1, tmp2;
|
||
|
double X1, Y1, Z1;
|
||
|
double X2, Y2, Z2;
|
||
|
|
||
|
|
||
|
if (N < 4 || N > 12) return -1;
|
||
|
|
||
|
for (i = 0; i < N; i++) { // Test: nicht hier rotieren, sondern spaeter Lsg rotieren...
|
||
|
rotZ(sats[i].X, sats[i].Y, sats[i].Z, 0.0, B[i], B[i]+1, B[i]+2);
|
||
|
//B[i][3] = sats[i].PR;
|
||
|
B[i][3] = sats[i].pseudorange + sats[i].clock_corr;
|
||
|
}
|
||
|
|
||
|
if (N == 4) {
|
||
|
matrix_invert(B, (double (*)[4])BBB);
|
||
|
}
|
||
|
else {
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
for (j = 0; j < 4; j++) {
|
||
|
BtB[i][j] = 0.0;
|
||
|
for (k = 0; k < N; k++) {
|
||
|
BtB[i][j] += B[k][i]*B[k][j];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
matrix_invert(BtB, BBinv);
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
for (j = 0; j < N; j++) {
|
||
|
BBB[i][j] = 0.0;
|
||
|
for (k = 0; k < 4; k++) {
|
||
|
BBB[i][j] += BBinv[i][k]*B[j][k];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
Be[i] = 0.0;
|
||
|
for (k = 0; k < N; k++) {
|
||
|
Be[i] += BBB[i][k]*1.0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < N; i++) {
|
||
|
a[i] = 0.5 * lorentz(B[i], B[i]);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
Ba[i] = 0.0;
|
||
|
for (k = 0; k < N; k++) {
|
||
|
Ba[i] += BBB[i][k]*a[k];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
q2 = lorentz(Be, Be);
|
||
|
q1 = lorentz(Ba, Be)-1;
|
||
|
q0 = lorentz(Ba, Ba);
|
||
|
|
||
|
if (q2 == 0) return -2;
|
||
|
|
||
|
p = q1/q2;
|
||
|
q = q0/q2;
|
||
|
|
||
|
sq = p*p - q;
|
||
|
if (sq < 0) return -2;
|
||
|
|
||
|
x1 = -p + sqrt(sq);
|
||
|
x2 = -p - sqrt(sq);
|
||
|
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
Lsg1[i] = x1*Be[i]+Ba[i];
|
||
|
Lsg2[i] = x2*Be[i]+Ba[i];
|
||
|
}
|
||
|
Lsg1[3] = -Lsg1[3];
|
||
|
Lsg2[3] = -Lsg2[3];
|
||
|
|
||
|
|
||
|
tmp1 = sqrt( Lsg1[0]*Lsg1[0] + Lsg1[1]*Lsg1[1] + Lsg1[2]*Lsg1[2] );
|
||
|
tmp2 = sqrt( Lsg2[0]*Lsg2[0] + Lsg2[1]*Lsg2[1] + Lsg2[2]*Lsg2[2] );
|
||
|
|
||
|
tmp1 = tmp1 - 6371000.0;
|
||
|
tmp2 = tmp2 - 6371000.0;
|
||
|
|
||
|
if ( fabs(tmp1) < fabs(tmp2) ) {
|
||
|
X1 = Lsg1[0]; Y1 = Lsg1[1]; Z1 = Lsg1[2]; *cc1 = Lsg1[3];
|
||
|
X2 = Lsg2[0]; Y2 = Lsg2[1]; Z2 = Lsg2[2]; *cc2 = Lsg2[3];
|
||
|
} else {
|
||
|
X1 = Lsg2[0]; Y1 = Lsg2[1]; Z1 = Lsg2[2]; *cc1 = Lsg2[3];
|
||
|
X2 = Lsg1[0]; Y2 = Lsg1[1]; Z2 = Lsg1[2]; *cc2 = Lsg1[3];
|
||
|
}
|
||
|
|
||
|
rotZ(X1, Y1, Z1, EARTH_ROTATION_RATE*RANGE_ESTIMATE, pos_ecef1, pos_ecef1+1, pos_ecef1+2);
|
||
|
rotZ(X2, Y2, Z2, EARTH_ROTATION_RATE*RANGE_ESTIMATE, pos_ecef2, pos_ecef2+1, pos_ecef2+2);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* ---------------------------------------------------------------------------------------------------- */
|
||
|
/* ---------------------------------------------------------------------------------------------------- */
|
||
|
//
|
||
|
// Satellite Position and Velocity
|
||
|
//
|
||
|
|
||
|
void GPS_SatelliteClockDriftCorrection(
|
||
|
const unsigned short transmission_gpsweek, // GPS week when signal was transmit (0-1024+) [weeks]
|
||
|
const double transmission_gpstow, // GPS time of week when signal was transmit [s]
|
||
|
const unsigned short ephem_week, // ephemeris: GPS week (0-1024+) [weeks]
|
||
|
const double toe, // ephemeris: time of week [s]
|
||
|
const double toc, // ephemeris: clock reference time of week [s]
|
||
|
const double af0, // ephemeris: polynomial clock correction coefficient [s],
|
||
|
const double af1, // ephemeris: polynomial clock correction coefficient [s/s],
|
||
|
const double af2, // ephemeris: polynomial clock correction coefficient [s/s^2]
|
||
|
const double ecc, // ephemeris: eccentricity of satellite orbit []
|
||
|
const double sqrta, // ephemeris: square root of the semi-major axis of orbit [m^(1/2)]
|
||
|
const double delta_n, // ephemeris: mean motion difference from computed value [rad]
|
||
|
const double m0, // ephemeris: mean anomaly at reference time [rad]
|
||
|
const double tgd, // ephemeris: group delay differential between L1 and L2 [s]
|
||
|
double* clock_correction, // ephemeris: satellite clock correction [m]
|
||
|
double* clock_drift ) // ephemeris: satellite clock drift correction [m/s]
|
||
|
{
|
||
|
int j;
|
||
|
|
||
|
double tot; // time of transmission (including gps week) [s]
|
||
|
double tk; // time from ephemeris reference epoch [s]
|
||
|
double tc; // time from clock reference epoch [s]
|
||
|
double d_tr; // relativistic correction term [s]
|
||
|
double d_tsv; // SV PRN code phase time offset [s]
|
||
|
double a; // semi-major axis of orbit [m]
|
||
|
double n; // corrected mean motion [rad/s]
|
||
|
double M; // mean anomaly, [rad]
|
||
|
double E; // eccentric anomaly [rad]
|
||
|
|
||
|
// compute the times from the reference epochs
|
||
|
tot = transmission_gpsweek*SECONDS_IN_WEEK + transmission_gpstow;
|
||
|
tk = tot - (ephem_week*SECONDS_IN_WEEK + toe);
|
||
|
tc = tot - (ephem_week*SECONDS_IN_WEEK + toc);
|
||
|
|
||
|
// compute the corrected mean motion term
|
||
|
a = sqrta*sqrta;
|
||
|
n = sqrt( GRAVITY_CONSTANT / (a*a*a) ); // mean motion
|
||
|
n += delta_n; // corrected mean motion
|
||
|
|
||
|
// Kepler-Gleichung M = E - e sin(E)
|
||
|
M = m0 + n*tk; // mean anomaly
|
||
|
E = M; // f(E) = M + e sin(E) hat Fixpunkt fuer e < 1,
|
||
|
for( j = 0; j < 7; j++ ) { // da |f'(E)|=|e cos(E)|<1.
|
||
|
E = M + ecc * sin(E); // waehle Startwert E_1 = M, E_{k+1} = f(E_k)
|
||
|
} // konvergiert langsam gegen E_0 = f(E_0)
|
||
|
|
||
|
// relativistic correction
|
||
|
d_tr = RELATIVISTIC_CLOCK_CORRECTION * ecc * sqrta * sin(E); // [s]
|
||
|
d_tr *= LIGHTSPEED;
|
||
|
|
||
|
// clock correction
|
||
|
d_tsv = af0 + af1*tc + af2*tc*tc; // [s]
|
||
|
|
||
|
// L1 only
|
||
|
d_tsv -= tgd; // [s]
|
||
|
|
||
|
// clock correction
|
||
|
*clock_correction = d_tsv*LIGHTSPEED + d_tr; // [m]
|
||
|
|
||
|
// clock drift
|
||
|
*clock_drift = (af1 + 2.0*af2*tc) * LIGHTSPEED; // [m/s]
|
||
|
|
||
|
}
|
||
|
|
||
|
void GPS_ComputeSatellitePositionVelocity(
|
||
|
const unsigned short transmission_gpsweek, // GPS week when signal was transmit (0-1024+) [weeks]
|
||
|
const double transmission_gpstow, // GPS time of week when signal was transmit [s]
|
||
|
const unsigned short ephem_week, // ephemeris: GPS week (0-1024+) [weeks]
|
||
|
const double toe, // ephemeris: time of week [s]
|
||
|
const double m0, // ephemeris: mean anomaly at reference time [rad]
|
||
|
const double delta_n, // ephemeris: mean motion difference from computed value [rad]
|
||
|
const double ecc, // ephemeris: eccentricity []
|
||
|
const double sqrta, // ephemeris: square root of the semi-major axis [m^(1/2)]
|
||
|
const double omega0, // ephemeris: longitude of ascending node of orbit plane at weekly epoch [rad]
|
||
|
const double i0, // ephemeris: inclination angle at reference time [rad]
|
||
|
const double w, // ephemeris: argument of perigee [rad]
|
||
|
const double omegadot, // ephemeris: rate of right ascension [rad/s]
|
||
|
const double idot, // ephemeris: rate of inclination angle [rad/s]
|
||
|
const double cuc, // ephemeris: cos harmonic correction term to the argument of latitude [rad]
|
||
|
const double cus, // ephemeris: sin harmonic correction term to the argument of latitude [rad]
|
||
|
const double crc, // ephemeris: cos harmonic correction term to the orbit radius [m]
|
||
|
const double crs, // ephemeris: sin harmonic correction term to the orbit radius [m]
|
||
|
const double cic, // ephemeris: cos harmonic correction term to the angle of inclination [rad]
|
||
|
const double cis, // ephemeris: sin harmonic correction term to the angle of inclination [rad]
|
||
|
double* x, // satellite x [m]
|
||
|
double* y, // satellite y [m]
|
||
|
double* z, // satellite z [m]
|
||
|
double* vx, // satellite velocity x [m/s]
|
||
|
double* vy, // satellite velocity y [m/s]
|
||
|
double* vz ) // satellite velocity z [m/s]
|
||
|
{
|
||
|
int j;
|
||
|
|
||
|
double tot; // time of transmission (including gps week) [s]
|
||
|
double tk; // time from ephemeris reference epoch [s]
|
||
|
double a; // semi-major axis of orbit [m]
|
||
|
double n; // corrected mean motion [rad/s]
|
||
|
double M; // mean anomaly, [rad]
|
||
|
double E; // eccentric anomaly [rad]
|
||
|
double v; // true anomaly [rad]
|
||
|
double u; // argument of latitude, corrected [rad]
|
||
|
double r; // radius in the orbital plane [m]
|
||
|
double i; // orbital inclination [rad]
|
||
|
double cos2u; // cos(2*u) []
|
||
|
double sin2u; // sin(2*u) []
|
||
|
double d_u; // argument of latitude correction [rad]
|
||
|
double d_r; // radius correction [m]
|
||
|
double d_i; // inclination correction [rad]
|
||
|
double x_op; // x position in the orbital plane [m]
|
||
|
double y_op; // y position in the orbital plane [m]
|
||
|
double omegak; // corrected longitude of the ascending node [rad]
|
||
|
double cos_omegak; // cos(omegak)
|
||
|
double sin_omegak; // sin(omegak)
|
||
|
double cosu; // cos(u)
|
||
|
double sinu; // sin(u)
|
||
|
double cosi; // cos(i)
|
||
|
double sini; // sin(i)
|
||
|
double cosE; // cos(E)
|
||
|
double sinE; // sin(E)
|
||
|
|
||
|
|
||
|
// compute the times from the reference epochs
|
||
|
tot = transmission_gpsweek*SECONDS_IN_WEEK + transmission_gpstow;
|
||
|
tk = tot - (ephem_week*SECONDS_IN_WEEK + toe);
|
||
|
|
||
|
// compute the corrected mean motion term
|
||
|
a = sqrta*sqrta;
|
||
|
n = sqrt( GRAVITY_CONSTANT / (a*a*a) ); // computed mean motion
|
||
|
n += delta_n; // corrected mean motion
|
||
|
|
||
|
// Kepler-Gleichung M = E - e sin(E)
|
||
|
M = m0 + n*tk; // mean anomaly
|
||
|
E = M; // f(E) = M + e sin(E) hat Fixpunkt fuer e < 1,
|
||
|
for( j = 0; j < 7; j++ ) { // da |f'(E)|=|e cos(E)|<1.
|
||
|
E = M + ecc * sin(E); // waehle Startwert E_1 = M, E_{k+1} = f(E_k)
|
||
|
} // konvergiert langsam gegen E_0 = f(E_0)
|
||
|
|
||
|
cosE = cos(E);
|
||
|
sinE = sin(E);
|
||
|
|
||
|
// true anomaly
|
||
|
v = atan2( (sqrt(1.0 - ecc*ecc)*sinE), (cosE - ecc) );
|
||
|
// argument of latitude
|
||
|
u = v + w;
|
||
|
// radius in orbital plane
|
||
|
r = a * (1.0 - ecc * cos(E));
|
||
|
// orbital inclination
|
||
|
i = i0;
|
||
|
|
||
|
// second harmonic perturbations
|
||
|
//
|
||
|
cos2u = cos(2.0*u);
|
||
|
sin2u = sin(2.0*u);
|
||
|
// argument of latitude correction
|
||
|
d_u = cuc * cos2u + cus * sin2u;
|
||
|
// radius correction
|
||
|
d_r = crc * cos2u + crs * sin2u;
|
||
|
// correction to inclination
|
||
|
d_i = cic * cos2u + cis * sin2u;
|
||
|
|
||
|
// corrected argument of latitude
|
||
|
u += d_u;
|
||
|
// corrected radius
|
||
|
r += d_r;
|
||
|
// corrected inclination
|
||
|
i += d_i + idot * tk;
|
||
|
|
||
|
// positions in orbital plane
|
||
|
cosu = cos(u);
|
||
|
sinu = sin(u);
|
||
|
x_op = r * cosu;
|
||
|
y_op = r * sinu;
|
||
|
|
||
|
|
||
|
omegak = omega0 + omegadot*tk - EARTH_ROTATION_RATE*(tk + toe);
|
||
|
// fuer Bestimmung der Satellitenposition in ECEF, range=0;
|
||
|
// fuer GPS-Loesung (Sats in ECI) Erdrotation hinzuziehen:
|
||
|
// rotZ(EARTH_ROTATION_RATE*0.072), 0.072s*299792458m/s=21585057m
|
||
|
|
||
|
// compute the WGS84 ECEF coordinates,
|
||
|
// vector r with components x & y is now rotated using, R3(-omegak)*R1(-i)
|
||
|
cos_omegak = cos(omegak);
|
||
|
sin_omegak = sin(omegak);
|
||
|
cosi = cos(i);
|
||
|
sini = sin(i);
|
||
|
|
||
|
*x = x_op * cos_omegak - y_op * sin_omegak * cosi;
|
||
|
*y = x_op * sin_omegak + y_op * cos_omegak * cosi;
|
||
|
*z = y_op * sini;
|
||
|
|
||
|
|
||
|
// Satellite Velocity Computations are below
|
||
|
// see Reference
|
||
|
// Remodi, B. M (2004). GPS Tool Box: Computing satellite velocities using the broadcast ephemeris.
|
||
|
// GPS Solutions. Volume 8(3), 2004. pp. 181-183
|
||
|
//
|
||
|
// example source code was available at [http://www.ngs.noaa.gov/gps-toolbox/bc_velo/bc_velo.c]
|
||
|
|
||
|
// recomputed the cos and sin of the corrected argument of latitude
|
||
|
|
||
|
double omegadotk; // corrected rate of right ascension [rad/s]
|
||
|
double edot; // edot = n/(1.0 - ecc*cos(E)), [rad/s]
|
||
|
double vdot; // d/dt of true anomaly [rad/s]
|
||
|
double udot; // d/dt of argument of latitude [rad/s]
|
||
|
double idotdot; // d/dt of the rate of the inclination angle [rad/s^2]
|
||
|
double rdot; // d/dt of the radius in the orbital plane [m/s]
|
||
|
double tmpa; // temp
|
||
|
double tmpb; // temp
|
||
|
double vx_op; // x velocity in the orbital plane [m/s]
|
||
|
double vy_op; // y velocity in the orbital plane [m/s]
|
||
|
|
||
|
cos2u = cos(2.0*u);
|
||
|
sin2u = sin(2.0*u);
|
||
|
|
||
|
edot = n / (1.0 - ecc*cosE);
|
||
|
vdot = sinE*edot*(1.0 + ecc*cos(v)) / ( sin(v)*(1.0-ecc*cosE) );
|
||
|
udot = vdot + 2.0*(cus*cos2u - cuc*sin2u)*vdot;
|
||
|
rdot = a*ecc*sinE*n/(1.0-ecc*cosE) + 2.0*(crs*cos2u - crc*sin2u)*vdot;
|
||
|
idotdot = idot + (cis*cos2u - cic*sin2u)*2.0*vdot;
|
||
|
|
||
|
vx_op = rdot*cosu - y_op*udot;
|
||
|
vy_op = rdot*sinu + x_op*udot;
|
||
|
|
||
|
// corrected rate of right ascension including similarily as above,
|
||
|
// for omegak, compensation for the Sagnac effect
|
||
|
omegadotk = omegadot - EARTH_ROTATION_RATE /* - EARTH_ROTATION_RATE*RANGERATE_ESTIMATE/LIGHTSPEED */ ;
|
||
|
|
||
|
tmpa = vx_op - y_op*cosi*omegadotk;
|
||
|
tmpb = x_op*omegadotk + vy_op*cosi - y_op*sini*idotdot;
|
||
|
|
||
|
*vx = tmpa * cos_omegak - tmpb * sin_omegak;
|
||
|
*vy = tmpa * sin_omegak + tmpb * cos_omegak;
|
||
|
*vz = vy_op*sini + y_op*cosi*idotdot;
|
||
|
}
|
||
|
|
||
|
void GPS_SatellitePositionVelocity_Ephem(
|
||
|
const unsigned short gpsweek, // gps week of signal transmission (0-1024+) [week]
|
||
|
const double gpstow, // time of week of signal transmission (gpstow-psr/c) [s]
|
||
|
EPHEM_t ephem,
|
||
|
double* clock_correction, // clock correction for this satellite for this epoch [m]
|
||
|
double* clock_drift, // clock correction for this satellite for this epoch [m]
|
||
|
double* satX, // satellite X position WGS84 ECEF [m]
|
||
|
double* satY, // satellite Y position WGS84 ECEF [m]
|
||
|
double* satZ, // satellite Z position WGS84 ECEF [m]
|
||
|
double* satvX, // satellite X velocity WGS84 ECEF [m]
|
||
|
double* satvY, // satellite Y velocity WGS84 ECEF [m]
|
||
|
double* satvZ // satellite Z velocity WGS84 ECEF [m]
|
||
|
)
|
||
|
{
|
||
|
double tow; // user time of week adjusted with the clock corrections [s]
|
||
|
double x; // sat X position [m]
|
||
|
double y; // sat Y position [m]
|
||
|
double z; // sat Z position [m]
|
||
|
double vx; // sat vX velocity [m]
|
||
|
double vy; // sat VY velocity [m]
|
||
|
double vz; // sat VZ velocity [m]
|
||
|
unsigned short week; // user week adjusted with the clock correction if needed [week]
|
||
|
|
||
|
|
||
|
x = y = z = 0.0;
|
||
|
|
||
|
GPS_SatelliteClockDriftCorrection( gpsweek, gpstow,
|
||
|
ephem.week, ephem.toe, ephem.toc, ephem.af0,
|
||
|
ephem.af1, ephem.af2, ephem.e, ephem.sqrta,
|
||
|
ephem.delta_n, ephem.M0, ephem.tgd, clock_correction, clock_drift );
|
||
|
|
||
|
|
||
|
// adjust for week rollover
|
||
|
week = gpsweek;
|
||
|
tow = gpstow + (*clock_correction)/LIGHTSPEED;
|
||
|
if ( tow < 0.0 ) {
|
||
|
tow += SECONDS_IN_WEEK;
|
||
|
week--;
|
||
|
}
|
||
|
if ( tow > SECONDS_IN_WEEK ) {
|
||
|
tow -= SECONDS_IN_WEEK;
|
||
|
week++;
|
||
|
}
|
||
|
|
||
|
//range = 0.072s*299792458m/s=21585057m
|
||
|
GPS_ComputeSatellitePositionVelocity( week, tow,
|
||
|
ephem.week, ephem.toe, ephem.M0, ephem.delta_n, ephem.e, ephem.sqrta,
|
||
|
ephem.Omega0, ephem.i0, ephem.w, ephem.OmegaDot, ephem.idot,
|
||
|
ephem.cuc, ephem.cus, ephem.crc, ephem.crs, ephem.cic, ephem.cis,
|
||
|
&x, &y, &z, &vx, &vy, &vz );
|
||
|
|
||
|
*satX = x;
|
||
|
*satY = y;
|
||
|
*satZ = z;
|
||
|
*satvX = vx;
|
||
|
*satvY = vy;
|
||
|
*satvZ = vz;
|
||
|
|
||
|
}
|
||
|
|
||
|
/* ---------------------------------------------------------------------------------------------------- */
|
||
|
|
||
|
|
||
|
double NAV_relVel(LOC_t loc, VEL_t vel) {
|
||
|
double d;
|
||
|
double x,y,z;
|
||
|
double norm;
|
||
|
|
||
|
x = vel.X-loc.X;
|
||
|
y = vel.Y-loc.Y;
|
||
|
z = vel.Z-loc.Z;
|
||
|
norm = sqrt(x*x+y*y+z*z);
|
||
|
x /= norm;
|
||
|
y /= norm;
|
||
|
z /= norm;
|
||
|
|
||
|
d = vel.vX*x + vel.vY*y + vel.vZ*z;
|
||
|
|
||
|
return d;
|
||
|
}
|
||
|
|
||
|
int NAV_LinP(int N, SAT_t satv[], double pos_ecef[3], double dt,
|
||
|
double dpos_ecef[3], double *cc) {
|
||
|
|
||
|
int i, j, k;
|
||
|
double B[N][4], Binv[4][N], BtB[4][4], BBinv[4][4];
|
||
|
double a[N], Ba[N];
|
||
|
|
||
|
double X, Y, Z;
|
||
|
double norm[N];
|
||
|
double range, obs_range, prox_range;
|
||
|
|
||
|
if (N < 4 || N > 12) return -1;
|
||
|
|
||
|
for (i = 0; i < N; i++) {
|
||
|
|
||
|
range = dist( pos_ecef[0], pos_ecef[1], pos_ecef[2], satv[i].X, satv[i].Y, satv[i].Z );
|
||
|
range /= LIGHTSPEED;
|
||
|
if (range < 0.06 || range > 0.1) range = RANGE_ESTIMATE;
|
||
|
rotZ(satv[i].X, satv[i].Y, satv[i].Z, EARTH_ROTATION_RATE*range, B[i], B[i]+1, B[i]+2);
|
||
|
//rotZ(satv[i].X, satv[i].Y, satv[i].Z, 0.0, B[i], B[i]+1, B[i]+2); // est. RANGE_RATE = 0.0
|
||
|
|
||
|
X = B[i][0]-pos_ecef[0];
|
||
|
Y = B[i][1]-pos_ecef[1];
|
||
|
Z = B[i][2]-pos_ecef[2];
|
||
|
norm[i] = sqrt(X*X+Y*Y+Z*Z);
|
||
|
|
||
|
B[i][0] = X/norm[i];
|
||
|
B[i][1] = Y/norm[i];
|
||
|
B[i][2] = Z/norm[i];
|
||
|
|
||
|
B[i][3] = 1;
|
||
|
}
|
||
|
|
||
|
if (N == 4) {
|
||
|
matrix_invert(B, (double (*)[4])Binv);
|
||
|
}
|
||
|
else {
|
||
|
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
for (j = 0; j < 4; j++) {
|
||
|
BtB[i][j] = 0.0;
|
||
|
for (k = 0; k < N; k++) {
|
||
|
BtB[i][j] += B[k][i]*B[k][j];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
matrix_invert(BtB, BBinv);
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
for (j = 0; j < N; j++) {
|
||
|
Binv[i][j] = 0.0;
|
||
|
for (k = 0; k < 4; k++) {
|
||
|
Binv[i][j] += BBinv[i][k]*B[j][k];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
for (i = 0; i < N; i++) {
|
||
|
obs_range = satv[i].pseudorange + satv[i].clock_corr; //satv[i].PR;
|
||
|
prox_range = norm[i] - dt;
|
||
|
a[i] = prox_range - obs_range;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
Ba[i] = 0.0;
|
||
|
for (k = 0; k < N; k++) {
|
||
|
Ba[i] += Binv[i][k]*a[k];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
dpos_ecef[0] = Ba[0];
|
||
|
dpos_ecef[1] = Ba[1];
|
||
|
dpos_ecef[2] = Ba[2];
|
||
|
|
||
|
*cc = Ba[3];
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int NAV_LinV(int N, SAT_t satv[], double pos_ecef[3],
|
||
|
double vel_ecef[3], double dt,
|
||
|
double dvel_ecef[3], double *cc) {
|
||
|
|
||
|
int i, j, k;
|
||
|
double B[N][4], Binv[4][N], BtB[4][4], BBinv[4][4];
|
||
|
double a[N], Ba[N];
|
||
|
|
||
|
double X, Y, Z;
|
||
|
double norm[N];
|
||
|
double v_proj;
|
||
|
double obs_rate, prox_rate;
|
||
|
LOC_t loc;
|
||
|
VEL_t vel;
|
||
|
|
||
|
if (N < 4 || N > 12) return -1;
|
||
|
|
||
|
loc.X = pos_ecef[0];
|
||
|
loc.Y = pos_ecef[1];
|
||
|
loc.Z = pos_ecef[2];
|
||
|
|
||
|
if (N < 4 || N > 12) return -1;
|
||
|
|
||
|
for (i = 0; i < N; i++) {
|
||
|
rotZ(satv[i].X, satv[i].Y, satv[i].Z, EARTH_ROTATION_RATE*RANGE_ESTIMATE, B[i], B[i]+1, B[i]+2);
|
||
|
//rotZ(satv[i].X, satv[i].Y, satv[i].Z, 0.0, B[i], B[i]+1, B[i]+2); // est. RANGE_RATE = 0.0
|
||
|
|
||
|
X = B[i][0]-pos_ecef[0];
|
||
|
Y = B[i][1]-pos_ecef[1];
|
||
|
Z = B[i][2]-pos_ecef[2];
|
||
|
norm[i] = sqrt(X*X+Y*Y+Z*Z);
|
||
|
B[i][0] = X/norm[i];
|
||
|
B[i][1] = Y/norm[i];
|
||
|
B[i][2] = Z/norm[i];
|
||
|
|
||
|
// SatSpeed = sqrt( satv[i].vX*satv[i].vX + satv[i].vY*satv[i].vY + satv[i].vZ*satv[i].vZ );
|
||
|
|
||
|
B[i][3] = 1;
|
||
|
}
|
||
|
|
||
|
if (N == 4) {
|
||
|
matrix_invert(B, (double (*)[4])Binv);
|
||
|
}
|
||
|
else {
|
||
|
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
for (j = 0; j < 4; j++) {
|
||
|
BtB[i][j] = 0.0;
|
||
|
for (k = 0; k < N; k++) {
|
||
|
BtB[i][j] += B[k][i]*B[k][j];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
matrix_invert(BtB, BBinv);
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
for (j = 0; j < N; j++) {
|
||
|
Binv[i][j] = 0.0;
|
||
|
for (k = 0; k < 4; k++) {
|
||
|
Binv[i][j] += BBinv[i][k]*B[j][k];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
for (i = 0; i < N; i++) {
|
||
|
obs_rate = satv[i].pseudorate; // + satv[i].clock_drift;
|
||
|
vel.X = satv[i].X;
|
||
|
vel.Y = satv[i].Y;
|
||
|
vel.Z = satv[i].Z;
|
||
|
vel.vX = satv[i].vX - vel_ecef[0];
|
||
|
vel.vY = satv[i].vY - vel_ecef[1];
|
||
|
vel.vZ = satv[i].vZ - vel_ecef[2];
|
||
|
v_proj = NAV_relVel(loc, vel);
|
||
|
prox_rate = v_proj - dt;
|
||
|
a[i] = prox_rate - obs_rate;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
Ba[i] = 0.0;
|
||
|
for (k = 0; k < N; k++) {
|
||
|
Ba[i] += Binv[i][k]*a[k];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
dvel_ecef[0] = Ba[0];
|
||
|
dvel_ecef[1] = Ba[1];
|
||
|
dvel_ecef[2] = Ba[2];
|
||
|
|
||
|
*cc = Ba[3];
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|