RadioSonde/libraries/SondeLib/rsc_decode.cpp

437 lines
12 KiB
C++
Raw Permalink Normal View History

2022-08-24 08:28:06 +02:00
/*
* Copyright 2016 Hannes Schmelzer, OE5HPM
* doing several cleanups and architecture changes, no functional change yet
*
* General purpose Reed-Solomon decoder for 8-bit symbols or less
* Copyright 2003 Phil Karn, KA9Q
* May be used under the terms of the GNU Lesser General Public License (LGPL)
*
* The guts of the Reed-Solomon decoder, meant to be #included
* into a function body with the following typedefs, macros and variables supplied
* according to the code parameters:
* data_t - a typedef for the data symbol
* data_t data[] - array of rs->nn data and parity symbols to be corrected in place
* retval - an integer lvalue into which the decoder's return code is written
* NROOTS - the number of roots in the RS code generator polynomial,
* which is the same as the number of parity symbols in a block.
Integer variable or literal.
* rs->nn - the total number of symbols in a RS block. Integer variable or literal.
* rs->pad - the number of pad symbols in a block. Integer variable or literal.
* rs->alpha_to - The address of an array of rs->nn elements to convert Galois field
* elements in index (log) form to polynomial form. Read only.
* rs->index_of - The address of an array of rs->nn elements to convert Galois field
* elements in polynomial form to index (log) form. Read only.
* MODNN - a function to reduce its argument modulo rs->nn. May be inline or a macro.
* rs->fcr - An integer literal or variable specifying the first consecutive root of the
* Reed-Solomon generator polynomial. Integer variable or literal.
* rs->prim - The primitive root of the generator poly. Integer variable or literal.
* DEBUG - If set to 1 or more, do various internal consistency checking. Leave this
* undefined for production code
* The memset(), memmove(), and memcpy() functions are used. The appropriate header
* file declaring these functions (usually <string.h>) must be included by the calling
* program.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
struct rs {
unsigned int magic; /* struct magic */
int mm; /* Bits per symbol */
int nn; /* Symbols per block (= (1<<mm)-1) */
unsigned char *alpha_to; /* log lookup table */
unsigned char *index_of; /* Antilog lookup table */
unsigned char *genpoly; /* Generator polynomial */
int nroots; /*
* Number of generator
* roots = number of parity symbols
*/
int fcr; /* First consecutive root, index form */
int prim; /* Primitive element, index form */
int iprim; /* prim-th root of 1, index form */
int pad; /* Padding bytes in shortened block */
};
static inline int modnn(struct rs *rs,int x)
{
while (x >= rs->nn) {
x -= rs->nn;
x = (x >> rs->mm) + (x & rs->nn);
}
return x;
}
#define MODNN(x) modnn(rs, x)
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAGIC 0xABCD6722
void free_rs_char(void *arg)
{
struct rs *rs = (struct rs *)arg;
if (rs == NULL)
return;
if (rs->magic != MAGIC)
return;
if (rs->alpha_to != NULL)
free(rs->alpha_to);
if (rs->index_of != NULL)
free(rs->index_of);
if (rs->genpoly != NULL)
free(rs->genpoly);
free(rs);
}
/* Initialize a Reed-Solomon codec
* symsize = symbol size, bits
* gfpoly = Field generator polynomial coefficients
* fcr = first root of RS code generator polynomial, index form
* prim = primitive element to generate polynomial roots
* nroots = RS code generator polynomial degree (number of roots)
* pad = padding bytes at front of shortened block
*/
void *init_rs_char(int symsize, int gfpoly, int fcr, int prim,
int nroots, int pad)
{
struct rs *rs;
int i, j, sr,root,iprim;
/* Check parameter ranges */
if (symsize < 0 || symsize > 8*sizeof(unsigned char))
return NULL;
if (fcr < 0 || fcr >= (1<<symsize))
return NULL;
if (prim <= 0 || prim >= (1<<symsize))
return NULL;
if (nroots < 0 || nroots >= (1<<symsize))
return NULL;
if (pad < 0 || pad >= ((1<<symsize) -1 - nroots))
return NULL;
rs = (struct rs*)malloc(sizeof(*rs));
if (rs == NULL) {
printf("%s: cannot allocate memory!\n", __func__);
return NULL;
}
memset(rs, 0, sizeof(*rs));
rs->magic = MAGIC;
rs->mm = symsize;
rs->nn = (1<<symsize)-1;
rs->pad = pad;
rs->alpha_to = (unsigned char *)malloc(sizeof(unsigned char)*(rs->nn+1));
if (rs->alpha_to == NULL) {
free(rs);
return NULL;
}
rs->index_of = (unsigned char *)malloc(sizeof(unsigned char)*(rs->nn+1));
if (rs->index_of == NULL) {
free(rs->alpha_to);
free(rs);
return NULL;
}
/* Generate Galois field lookup tables */
rs->index_of[0] = rs->nn; /* log(zero) = -inf */
rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */
sr = 1;
for (i = 0; i < rs->nn; i++) {
rs->index_of[sr] = i;
rs->alpha_to[i] = sr;
sr <<= 1;
if (sr & (1<<symsize))
sr ^= gfpoly;
sr &= rs->nn;
}
if (sr != 1) {
/* field generator polynomial is not primitive! */
free(rs->alpha_to);
free(rs->index_of);
free(rs);
return NULL;
}
/* Form RS code generator polynomial from its roots */
rs->genpoly = (unsigned char *)malloc(sizeof(unsigned char)*(nroots+1));
if(rs->genpoly == NULL) {
free(rs->alpha_to);
free(rs->index_of);
free(rs);
return NULL;
}
rs->fcr = fcr;
rs->prim = prim;
rs->nroots = nroots;
/* Find prim-th root of 1, used in decoding */
for (iprim = 1; (iprim % prim) != 0; iprim += rs->nn)
;
rs->iprim = iprim / prim;
rs->genpoly[0] = 1;
for (i = 0, root = fcr*prim; i < nroots; i++, root += prim) {
rs->genpoly[i+1] = 1;
/* Multiply rs->genpoly[] by @**(root + x) */
for (j = i; j > 0; j--) {
if (rs->genpoly[j] != 0)
rs->genpoly[j] = rs->genpoly[j-1] ^ rs->alpha_to[modnn(rs,rs->index_of[rs->genpoly[j]] + root)];
else
rs->genpoly[j] = rs->genpoly[j-1];
}
/* rs->genpoly[0] can never be zero */
rs->genpoly[0] = rs->alpha_to[modnn(rs,rs->index_of[rs->genpoly[0]] + root)];
}
/* convert rs->genpoly[] to index form for quicker encoding */
for (i = 0; i <= nroots; i++)
rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
return rs;
}
int decode_rs_char(void *arg,
unsigned char *data, int *eras_pos, int no_eras)
{
struct rs *rs = (struct rs *)arg;
if (rs == NULL)
return -1;
if (rs->magic != MAGIC)
return -1;
int retval;
int deg_lambda, el, deg_omega;
int i, j, r,k;
unsigned char u,q,tmp,num1,num2,den,discr_r;
unsigned char lambda[rs->nroots+1], s[rs->nroots]; /* Err+Eras Locator poly
* and syndrome poly */
unsigned char b[rs->nroots+1], t[rs->nroots+1], omega[rs->nroots+1];
unsigned char root[rs->nroots], reg[rs->nroots+1], loc[rs->nroots];
int syn_error, count;
/* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
for (i = 0; i < rs->nroots; i++)
s[i] = data[0];
for (j = 1; j < rs->nn-rs->pad; j++) {
for(i=0;i<rs->nroots;i++) {
if(s[i] == 0) {
s[i] = data[j];
} else {
s[i] = data[j] ^ rs->alpha_to[MODNN(rs->index_of[s[i]] + (rs->fcr+i)*rs->prim)];
}
}
}
/* Convert syndromes to index form, checking for nonzero condition */
syn_error = 0;
for (i = 0; i < rs->nroots; i++) {
syn_error |= s[i];
s[i] = rs->index_of[s[i]];
}
if (!syn_error) {
/* if syndrome is zero, data[] is a codeword and there are no
* errors to correct. So return data[] unmodified
*/
count = 0;
goto finish;
}
memset(&lambda[1], 0, rs->nroots*sizeof(lambda[0]));
lambda[0] = 1;
if (no_eras > 0) {
/* Init lambda to be the erasure locator polynomial */
lambda[1] = rs->alpha_to[MODNN(rs->prim*(rs->nn-1-eras_pos[0]))];
for (i = 1; i < no_eras; i++) {
u = MODNN(rs->prim*(rs->nn-1-eras_pos[i]));
for (j = i+1; j > 0; j--) {
tmp = rs->index_of[lambda[j - 1]];
if(tmp != rs->nn)
lambda[j] ^= rs->alpha_to[MODNN(u + tmp)];
}
}
#if DEBUG >= 1
/* Test code that verifies the erasure locator polynomial just constructed
Needed only for decoder debugging. */
/* find roots of the erasure location polynomial */
for(i=1;i<=no_eras;i++)
reg[i] = rs->index_of[lambda[i]];
count = 0;
for (i = 1,k=rs->iprim-1; i <= rs->nn; i++,k = MODNN(k+rs->iprim)) {
q = 1;
for (j = 1; j <= no_eras; j++)
if (reg[j] != rs->nn) {
reg[j] = MODNN(reg[j] + j);
q ^= rs->alpha_to[reg[j]];
}
if (q != 0)
continue;
/* store root and error location number indices */
root[count] = i;
loc[count] = k;
count++;
}
if (count != no_eras) {
printf("count = %d no_eras = %d\n lambda(x) is WRONG\n",count,no_eras);
count = -1;
goto finish;
}
#if DEBUG >= 2
printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
for (i = 0; i < count; i++)
printf("%d ", loc[i]);
printf("\n");
#endif
#endif
}
for (i = 0; i < rs->nroots+1; i++)
b[i] = rs->index_of[lambda[i]];
/*
* Begin Berlekamp-Massey algorithm to determine error+erasure
* locator polynomial
*/
r = no_eras;
el = no_eras;
while (++r <= rs->nroots) { /* r is the step number */
/* Compute discrepancy at the r-th step in poly-form */
discr_r = 0;
for (i = 0; i < r; i++) {
if ((lambda[i] != 0) && (s[r-i-1] != rs->nn)) {
discr_r ^= rs->alpha_to[MODNN(rs->index_of[lambda[i]] + s[r-i-1])];
}
}
discr_r = rs->index_of[discr_r]; /* Index form */
if (discr_r == rs->nn) {
/* 2 lines below: B(x) <-- x*B(x) */
memmove(&b[1],b,rs->nroots*sizeof(b[0]));
b[0] = rs->nn;
} else {
/* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
t[0] = lambda[0];
for (i = 0 ; i < rs->nroots; i++) {
if(b[i] != rs->nn)
t[i+1] = lambda[i+1] ^ rs->alpha_to[MODNN(discr_r + b[i])];
else
t[i+1] = lambda[i+1];
}
if (2 * el <= r + no_eras - 1) {
el = r + no_eras - el;
/*
* 2 lines below: B(x) <-- inv(discr_r) *
* lambda(x)
*/
for (i = 0; i <= rs->nroots; i++)
b[i] = (lambda[i] == 0) ? rs->nn : MODNN(rs->index_of[lambda[i]] - discr_r + rs->nn);
} else {
/* 2 lines below: B(x) <-- x*B(x) */
memmove(&b[1],b,rs->nroots*sizeof(b[0]));
b[0] = rs->nn;
}
memcpy(lambda,t,(rs->nroots+1)*sizeof(t[0]));
}
}
/* Convert lambda to index form and compute deg(lambda(x)) */
deg_lambda = 0;
for (i = 0;i < rs->nroots+1; i++){
lambda[i] = rs->index_of[lambda[i]];
if(lambda[i] != rs->nn)
deg_lambda = i;
}
/* Find roots of the error+erasure locator polynomial by Chien search */
memcpy(&reg[1], &lambda[1], rs->nroots*sizeof(reg[0]));
count = 0; /* Number of roots of lambda(x) */
for (i = 1,k=rs->iprim-1; i <= rs->nn; i++,k = MODNN(k+rs->iprim)) {
q = 1; /* lambda[0] is always 0 */
for (j = deg_lambda; j > 0; j--) {
if (reg[j] != rs->nn) {
reg[j] = MODNN(reg[j] + j);
q ^= rs->alpha_to[reg[j]];
}
}
if (q != 0)
continue; /* Not a root */
/* store root (index-form) and error location number */
#if DEBUG>=2
printf("count %d root %d loc %d\n",count,i,k);
#endif
root[count] = i;
loc[count] = k;
/* If we've already found max possible roots,
* abort the search to save time
*/
if(++count == deg_lambda)
break;
}
if (deg_lambda != count) {
/*
* deg(lambda) unequal to number of roots => uncorrectable
* error detected
*/
count = -1;
goto finish;
}
/*
* Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
* x**rs->nroots). in index form. Also find deg(omega).
*/
deg_omega = deg_lambda-1;
for (i = 0; i <= deg_omega;i++) {
tmp = 0;
for (j = i; j >= 0; j--) {
if ((s[i - j] != rs->nn) && (lambda[j] != rs->nn))
tmp ^= rs->alpha_to[MODNN(s[i - j] + lambda[j])];
}
omega[i] = rs->index_of[tmp];
}
/*
* Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
* inv(X(l))**(rs->fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form
*/
for (j = count-1; j >=0; j--) {
num1 = 0;
for (i = deg_omega; i >= 0; i--) {
if (omega[i] != rs->nn)
num1 ^= rs->alpha_to[MODNN(omega[i] + i * root[j])];
}
num2 = rs->alpha_to[MODNN(root[j] * (rs->fcr - 1) + rs->nn)];
den = 0;
/* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
for (i = MIN(deg_lambda, rs->nroots-1) & ~1; i >= 0; i -=2) {
if(lambda[i+1] != rs->nn)
den ^= rs->alpha_to[MODNN(lambda[i+1] + i * root[j])];
}
#if DEBUG >= 1
if (den == 0) {
printf("\n ERROR: denominator = 0\n");
count = -1;
goto finish;
}
#endif
/* Apply error to data */
if (num1 != 0 && loc[j] >= rs->pad) {
data[loc[j]-rs->pad] ^= rs->alpha_to[MODNN(rs->index_of[num1] + rs->index_of[num2] + rs->nn - rs->index_of[den])];
}
}
finish:
if(eras_pos != NULL) {
for (i = 0; i < count; i++)
eras_pos[i] = loc[i];
}
retval = count;
return retval;
}