RadioSonde/libraries/SondeLib/rs92gps.cpp
2022-08-24 08:28:06 +02:00

1736 lines
53 KiB
C++
Executable File

/* SPDX-License-Identifier: GPL-3.0
* based on https://github.com/rs1729/RS/blob/master/rs92/rs92gps.c
*
* radiosonde RS92
*
*
* broadcast ephemeris:
* http://cddis.gsfc.nasa.gov/Data_and_Derived_Products/GNSS/broadcast_ephemeris_data.html
* ftp://cddis.gsfc.nasa.gov/gnss/data/daily/YYYY/DDD/YYn/brdcDDD0.YYn.Z (updated)
* ftp://cddis.gsfc.nasa.gov/gnss/data/daily/YYYY/brdc/brdcDDD0.YYn.Z (final)
*
* SEM almanac:
* https://celestrak.com/GPS/almanac/SEM/
*
* GPS calendar:
* http://adn.agi.com/GNSSWeb/
*
* GPS-Hoehe ueber Ellipsoid, Geoid-Hoehe:
* http://geographiclib.sourceforge.net/cgi-bin/GeoidEval
*/
/*
gcc rs92gps.c -lm -o rs92gps
(includes nav_gps_vel.c)
examples:
sox -t oss /dev/dsp -t wav - lowpass 2600 2>/dev/null | ./rs92gps -e brdc3050.15n
./rs92gps -r 2015_11_01.wav > raw1.out
sox -t oss /dev/dsp -t wav - lowpass 2600 2>/dev/null | stdbuf -oL ./rs92gps -r > raw2.out
./rs92gps --dop 5 -gg -e brdc3050.15n --rawin1 raw.out
sox -t oss /dev/dsp -t wav - lowpass 2600 2>/dev/null | tee audio.wav | ./rs92gps -e brdc3050.15n
./rs92gps -g1 -e brdc3050.15n 2015_11_01-14.wav | tee out1.txt
./rs92gps -g2 -e brdc3050.15n 2015_11_01-14.wav | tee out2.txt
sox 2015_11_01.wav -t wav - lowpass 2600 2>/dev/null | ./rs92gps -gg -e brdc3050.15n | tee out3.txt
sox -t oss /dev/dsp -t wav - lowpass 2600 2>/dev/null | stdbuf -oL ./rs92gps -e brdc3050.15n > out1.txt
sox -t oss /dev/dsp -t wav - lowpass 2600 2>/dev/null | stdbuf -oL ./rs92gps -e brdc3050.15n | tee out2.txt
*/
#if 1
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <stdint.h>
#endif
#include <SPIFFS.h>
#include "nav_gps_vel.h"
#include "rs92gps.h"
#include "Sonde.h"
gpx_t gpx;
int option_verbose = 0, // ausfuehrliche Anzeige
option_raw = 1, // rohe Frames
option_inv = 0, // invertiert Signal
option_res = 0, // genauere Bitmessung
option_crc = 0, // check CRC
option_avg = 0, // moving average
option_b = 0,
fileloaded = 0,
option_vergps = 0,
option_iter = 0,
option_vel = 0, // velocity
option_aux = 0, // Aux/Ozon
option_der = 0, // linErr
rawin = 0;
double dop_limit = 9.9;
double d_err = 10000;
int rollover = 0,
err_gps = 0;
int almanac = 0,
ephem = 0;
int exSat = -1;
#if 0
/* --- RS92-SGP: 8N1 manchester --- */
#define BITS (2*(1+8+1)) // 20
#define HEADOFS 40 // HEADOFS+HEADLEN = 120 (bis 0x10)
#define HEADLEN 80 // (HEADOFS+HEADLEN) mod BITS = 0
/*
#define HEADOFS 0 // HEADOFS muss 0 wegen Wiederholung
#define HEADLEN 60 // HEADLEN < 100, (HEADOFS+HEADLEN) mod BITS = 0
*/
#define FRAMESTART ((HEADOFS+HEADLEN)/BITS)
/* 2A 10*/
char header[] = "10100110011001101001"
"10100110011001101001"
"10100110011001101001"
"10100110011001101001"
"1010011001100110100110101010100110101001";
char buf[HEADLEN+1] = "x";
#endif
int bufpos = -1;
#define FRAME_LEN 240
uint8_t frame[FRAME_LEN] = { 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x10};
/* --- RS92-SGP ------------------- */
char buffer_rawin[3*FRAME_LEN+8]; //## rawin1: buffer_rawin[2*FRAME_LEN+4];
int frameofs = 0;
#define MASK_LEN 64
uint8_t mask[MASK_LEN] = { 0x96, 0x83, 0x3E, 0x51, 0xB1, 0x49, 0x08, 0x98,
0x32, 0x05, 0x59, 0x0E, 0xF9, 0x44, 0xC6, 0x26,
0x21, 0x60, 0xC2, 0xEA, 0x79, 0x5D, 0x6D, 0xA1,
0x54, 0x69, 0x47, 0x0C, 0xDC, 0xE8, 0x5C, 0xF1,
0xF7, 0x76, 0x82, 0x7F, 0x07, 0x99, 0xA2, 0x2C,
0x93, 0x7C, 0x30, 0x63, 0xF5, 0x10, 0x2E, 0x61,
0xD0, 0xBC, 0xB4, 0xB6, 0x06, 0xAA, 0xF4, 0x23,
0x78, 0x6E, 0x3B, 0xAE, 0xBF, 0x7B, 0x4C, 0xC1};
/* LFSR: ab i=8 (mod 64):
* m[16+i] = m[i] ^ m[i+2] ^ m[i+4] ^ m[i+6]
* ________________3205590EF944C6262160C2EA795D6DA15469470CDCE85CF1
* F776827F0799A22C937C3063F5102E61D0BCB4B606AAF423786E3BAEBF7B4CC196833E51B1490898
*/
/* ------------------------------------------------------------------------------------ */
#define BAUD_RATE 4800
int sample_rate = 0, bits_sample = 0, channels = 0;
float samples_per_bit = 0;
int findstr(char *buff, char *str, int pos) {
int i;
for (i = 0; i < 4; i++) {
if (buff[(pos+i)%4] != str[i]) break;
}
return i;
}
#if 0
int read_wav_header(FILE *fp) {
char txt[4+1] = "\0\0\0\0";
unsigned char dat[4];
int byte, p=0;
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "RIFF", 4)) return -1;
if (fread(txt, 1, 4, fp) < 4) return -1;
// pos_WAVE = 8L
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "WAVE", 4)) return -1;
// pos_fmt = 12L
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "fmt ", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
channels = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 4, fp) < 4) return -1;
memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24);
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
//byte = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 2, fp) < 2) return -1;
bits_sample = dat[0] + (dat[1] << 8);
// pos_dat = 36L + info
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "data", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
Serial.printf("sample_rate: %d\n", sample_rate);
Serial.printf("bits : %d\n", bits_sample);
Serial.printf("channels : %d\n", channels);
if ((bits_sample != 8) && (bits_sample != 16)) return -1;
samples_per_bit = sample_rate/(float)BAUD_RATE;
Serial.printf("samples/bit: %.2f\n", samples_per_bit);
return 0;
}
#endif
#if 0
#define EOF_INT 0x1000000
#define LEN_movAvg 3
int movAvg[LEN_movAvg];
unsigned long sample_count = 0;
double bitgrenze = 0;
int read_signed_sample(FILE *fp) { // int = i32_t
int byte, i, sample, s=0; // EOF -> 0x1000000
for (i = 0; i < channels; i++) {
// i = 0: links bzw. mono
byte = fgetc(fp);
if (byte == EOF) return EOF_INT;
if (i == 0) sample = byte;
if (bits_sample == 16) {
byte = fgetc(fp);
if (byte == EOF) return EOF_INT;
if (i == 0) sample += byte << 8;
}
}
if (bits_sample == 8) s = sample-128; // 8bit: 00..FF, centerpoint 0x80=128
if (bits_sample == 16) s = (short)sample;
if (option_avg) {
movAvg[sample_count % LEN_movAvg] = s;
s = 0;
for (i = 0; i < LEN_movAvg; i++) s += movAvg[i];
s = (s+0.5) / LEN_movAvg;
}
sample_count++;
return s;
}
int par=1, par_alt=1;
int read_bits_fsk(FILE *fp, int *bit, int *len) {
static int sample;
int n, y0;
float l, x1;
static float x0;
n = 0;
do{
y0 = sample;
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
//sample_count++; // in read_signed_sample()
par_alt = par;
par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
n++;
} while (par*par_alt > 0);
if (!option_res) l = (float)n / samples_per_bit;
else { // genauere Bitlaengen-Messung
x1 = sample/(float)(sample-y0); // hilft bei niedriger sample rate
l = (n+x0-x1) / samples_per_bit; // meist mehr frames (nicht immer)
x0 = x1;
}
*len = (int)(l+0.5);
if (!option_inv) *bit = (1+par_alt)/2; // oben 1, unten -1
else *bit = (1-par_alt)/2; // sdr#<rev1381?, invers: unten 1, oben -1
/* Y-offset ? */
return 0;
}
int bitstart = 0;
int read_rawbit(FILE *fp, int *bit) {
int sample;
int n, sum;
sum = 0;
n = 0;
if (bitstart) {
n = 1; // d.h. bitgrenze = sample_count-1 (?)
bitgrenze = sample_count-1;
bitstart = 0;
}
bitgrenze += samples_per_bit;
do {
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
//sample_count++; // in read_signed_sample()
//par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
sum += sample;
n++;
} while (sample_count < bitgrenze); // n < samples_per_bit
if (sum >= 0) *bit = 1;
else *bit = 0;
if (option_inv) *bit ^= 1;
return 0;
}
/* ------------------------------------------------------------------------------------ */
// manchester1 1->10,0->01: 1.bit
// manchester2 0->10,1->01: 2.bit
// RS92-SGP: 8N1 manchester2
char manch(char *mbits) {
if ((mbits[0] == 1) && (mbits[1] == 0)) return 0;
else if ((mbits[0] == 0) && (mbits[1] == 1)) return 1;
else return -1;
}
int bits2byte(char bits[]) {
int i, byteval=0, d=1;
int bit8[8];
if (manch(bits+0) != 0) return 0x100;
for (i = 0; i < 8; i++) {
bit8[i] = manch(bits+2*(i+1));
}
if (manch(bits+(2*(8+1))) != 1) return 0x100;
for (i = 0; i < 8; i++) { // little endian
if (bit8[i] == 1) byteval += d;
else if (bit8[i] == 0) byteval += 0;
else return 0x100;
d <<= 1;
}
return byteval;
}
void inc_bufpos() {
bufpos = (bufpos+1) % HEADLEN;
}
int compare() {
int i=0, j = bufpos;
while (i < HEADLEN) {
if (j < 0) j = HEADLEN-1;
if (buf[j] != header[HEADOFS+HEADLEN-1-i]) break;
j--;
i++;
}
return i;
}
#endif
/*
uint8_t xorbyte(int pos) {
return xframe[pos] ^ mask[pos % MASK_LEN];
}
*/
uint8_t framebyte(int pos) {
return frame[pos];
}
/* ------------------------------------------------------------------------------------ */
#define GPS_WEEK1024 1
#define WEEKSEC 604800
/*
* Convert GPS Week and Seconds to Modified Julian Day.
* - Adapted from sci.astro FAQ.
* - Ignores UTC leap seconds.
*/
void Gps2Date(long GpsWeek, long GpsSeconds, int *Year, int *Month, int *Day) {
long GpsDays, Mjd;
long J, C, Y, M;
GpsDays = GpsWeek * 7 + (GpsSeconds / 86400);
Mjd = 44244 + GpsDays;
J = Mjd + 2468570;
C = 4 * J / 146097;
J = J - (146097 * C + 3) / 4;
Y = 4000 * (J + 1) / 1461001;
J = J - 1461 * Y / 4 + 31;
M = 80 * J / 2447;
*Day = J - 2447 * M / 80;
J = M / 11;
*Month = M + 2 - (12 * J);
*Year = 100 * (C - 49) + Y + J;
}
/* ------------------------------------------------------------------------------------ */
#define pos_FrameNb 0x08 // 2 byte
#define pos_SondeID 0x0C // 8 byte // oder: 0x0A, 10 byte?
#define pos_CalData 0x17 // 1 byte, counter 0x00..0x1f
#define pos_Calfreq 0x1A // 2 byte, calfr 0x00
#define posGPS_TOW 0x48 // 4 byte
#define posGPS_PRN 0x4E // 12*5 bit in 8 byte
#define posGPS_STATUS 0x56 // 12 byte
#define posGPS_DATA 0x62 // 12*8 byte
#define pos_PTU 0x2C // 24 byte
#define pos_AuxData 0xC8 // 8 byte
#define BLOCK_CFG 0x6510 // frame[pos_FrameNb-2], frame[pos_FrameNb-1]
#define BLOCK_PTU 0x690C
#define BLOCK_GPS 0x673D // frame[posGPS_TOW-2], frame[posGPS_TOW-1]
#define BLOCK_AUX 0x6805
#define LEN_CFG (2*(BLOCK_CFG & 0xFF))
#define LEN_GPS (2*(BLOCK_GPS & 0xFF))
#define LEN_PTU (2*(BLOCK_PTU & 0xFF))
int crc16(int start, int len) {
int crc16poly = 0x1021;
int rem = 0xFFFF, i, j;
int byte;
if (start+len >= FRAME_LEN) return -1;
for (i = 0; i < len; i++) {
byte = framebyte(start+i);
rem = rem ^ (byte << 8);
for (j = 0; j < 8; j++) {
if (rem & 0x8000) {
rem = (rem << 1) ^ crc16poly;
}
else {
rem = (rem << 1);
}
rem &= 0xFFFF;
}
}
return rem;
}
int get_FrameNb() {
int i;
unsigned byte;
uint8_t frnr_bytes[2];
int frnr;
for (i = 0; i < 2; i++) {
byte = framebyte(pos_FrameNb + i);
frnr_bytes[i] = byte;
}
frnr = frnr_bytes[0] + (frnr_bytes[1] << 8);
gpx.frnr = frnr;
return 0;
}
int get_SondeID() {
int i, ret=0;
unsigned byte;
uint8_t sondeid_bytes[10];
int crc_frame, crc;
// BLOCK_CFG == frame[pos_FrameNb-2 .. pos_FrameNb-1] ?
crc_frame = framebyte(pos_FrameNb+LEN_CFG) | (framebyte(pos_FrameNb+LEN_CFG+1) << 8);
crc = crc16(pos_FrameNb, LEN_CFG);
/*
if (option_crc) {
//fprintf(stdout, " (%04X:%02X%02X) ", BLOCK_CFG, frame[pos_FrameNb-2], frame[pos_FrameNb-1]);
fprintf(stdout, " [%04X:%04X] ", crc_frame, crc);
}
*/
ret = 0;
if ( 0 && option_crc && crc != crc_frame) {
ret = -2; // erst wichtig, wenn Cal/Cfg-Data
}
for (i = 0; i < 8; i++) {
byte = framebyte(pos_SondeID + i);
if ((byte < 0x20) || (byte > 0x7E)) return -1;
sondeid_bytes[i] = byte;
}
for (i = 0; i < 8; i++) {
gpx.id[i] = sondeid_bytes[i];
}
gpx.id[8] = '\0';
return ret;
}
char weekday[7][3] = { "So", "Mo", "Di", "Mi", "Do", "Fr", "Sa"};
int get_GPStime() {
int i, ret=0;
unsigned byte;
uint8_t gpstime_bytes[4];
int gpstime = 0, // 32bit
day;
int ms;
int crc_frame, crc;
// BLOCK_GPS == frame[posGPS_TOW-2 .. posGPS_TOW-1] ?
crc_frame = framebyte(posGPS_TOW+LEN_GPS) | (framebyte(posGPS_TOW+LEN_GPS+1) << 8);
crc = crc16(posGPS_TOW, LEN_GPS);
/*
if (option_crc) {
//fprintf(stdout, " (%04X:%02X%02X) ", BLOCK_GPS, frame[posGPS_TOW-2], frame[posGPS_TOW-1]);
fprintf(stdout, " [%04X:%04X] ", crc_frame, crc);
}
*/
ret = 0;
if (option_crc && crc != crc_frame) {
ret = -2;
}
for (i = 0; i < 4; i++) {
byte = framebyte(posGPS_TOW + i);
gpstime_bytes[i] = byte;
}
memcpy(&gpstime, gpstime_bytes, 4);
ms = gpstime % 1000;
gpstime /= 1000;
gpx.gpssec = gpstime;
Serial.printf("GPS time is %04x (%d)\n", gpstime, gpstime);
day = (gpstime / (24 * 3600)) % 7; // besser CRC-check, da auch
//if ((day < 0) || (day > 6)) return -1; // gpssec=604800,604801 beobachtet
gpstime %= (24*3600);
gpx.wday = day;
gpx.std = gpstime / 3600;
gpx.min = (gpstime % 3600) / 60;
gpx.sek = gpstime % 60 + ms/1000.0;
return ret;
}
int get_Aux() {
int i;
unsigned short byte;
for (i = 0; i < 4; i++) {
byte = framebyte(pos_AuxData+2*i)+(framebyte(pos_AuxData+2*i+1)<<8);
gpx.aux[i] = byte;
}
return 0;
}
int get_Cal() {
int i;
unsigned byte;
uint8_t calfr = 0;
//uint8_t burst = 0;
int freq = 0;
uint8_t freq_bytes[2];
byte = framebyte(pos_CalData);
calfr = byte;
if (option_verbose == 4) {
fprintf(stdout, "\n");
fprintf(stdout, "[%5d] ", gpx.frnr);
fprintf(stdout, " 0x%02x:", calfr);
}
for (i = 0; i < 16; i++) {
byte = framebyte(pos_CalData+1+i);
if (option_verbose == 4) {
fprintf(stdout, " %02x", byte);
}
}
if (option_aux) {
get_Aux();
if (option_verbose == 4) {
fprintf(stdout, " # ");
for (i = 0; i < 8; i++) {
byte = framebyte(pos_AuxData+i);
fprintf(stdout, "%02x ", byte);
}
}
else {
if (gpx.aux[0] != 0 || gpx.aux[1] != 0 || gpx.aux[2] != 0 || gpx.aux[3] != 0) {
fprintf(stdout, " # %04x %04x %04x %04x", gpx.aux[0], gpx.aux[1], gpx.aux[2], gpx.aux[3]);
}
}
}
if (calfr == 0x00) {
for (i = 0; i < 2; i++) {
byte = framebyte(pos_Calfreq + i);
freq_bytes[i] = byte;
}
byte = freq_bytes[0] + (freq_bytes[1] << 8);
//fprintf(stdout, ":%04x ", byte);
freq = 400000 + 10*byte; // kHz;
gpx.freq = freq;
fprintf(stdout, " : fq %d kHz", freq);
}
return 0;
}
/* ---------------------------------------------------------------------------------------------------- */
//we only use ephs EPHEM_t alm[33];
//EPHEM_t eph[33][24];
EPHEM_t *ephs = NULL;
SAT_t sat[33],
sat1s[33];
uint8_t prn_le[12*5+4];
/* le - little endian */
int prnbits_le(uint16_t byte16, uint8_t bits[64], int block) {
int i; /* letztes bit Ueberlauf, wenn 3. PRN = 32 */
for (i = 0; i < 15; i++) {
bits[15*block+i] = byte16 & 1;
byte16 >>= 1;
}
bits[60+block] = byte16 & 1;
return byte16 & 1;
}
uint8_t prns[12], // PRNs in data
sat_status[12];
int prn32toggle = 0x1, ind_prn32, prn32next;
void prn12(uint8_t *prn_le, uint8_t prns[12]) {
int i, j, d;
for (i = 0; i < 12; i++) {
prns[i] = 0;
d = 1;
for (j = 0; j < 5; j++) {
if (prn_le[5*i+j]) prns[i] += d;
d <<= 1;
}
}
ind_prn32 = 32;
for (i = 0; i < 12; i++) {
// PRN-32 overflow
if ( (prns[i] == 0) && (sat_status[i] & 0x0F) ) { // 5 bit: 0..31
if ( ((i % 3 == 2) && (prn_le[60+i/3] & 1)) // Spalte 2
|| ((i % 3 != 2) && (prn_le[5*(i+1)] & 1)) ) { // Spalte 0,1
prns[i] = 32; ind_prn32 = i;
}
}
else if ((sat_status[i] & 0x0F) == 0) { // erste beiden bits: 0x03 ?
prns[i] = 0;
}
}
prn32next = 0;
if (ind_prn32 < 12) {
// PRN-32 overflow
if (ind_prn32 % 3 != 2) { // -> ind_prn32<11 // vorausgesetzt im Block folgt auf PRN-32
if ((sat_status[ind_prn32+1] & 0x0F) && prns[ind_prn32+1] > 1) { // entweder PRN-1 oder PRN-gerade
// && prns[ind_prn32+1] != 3 ?
for (j = 0; j < ind_prn32; j++) {
if (prns[j] == (prns[ind_prn32+1]^prn32toggle) && (sat_status[j] & 0x0F)) break;
}
if (j < ind_prn32) { prn32toggle ^= 0x1; }
else {
for (j = ind_prn32+2; j < 12; j++) {
if (prns[j] == (prns[ind_prn32+1]^prn32toggle) && (sat_status[j] & 0x0F)) break;
}
if (j < 12) { prn32toggle ^= 0x1; }
}
prns[ind_prn32+1] ^= prn32toggle;
/*
// nochmal testen
for (j = 0; j < ind_prn32; j++) { if (prns[j] == prns[ind_prn32+1]) break; }
if (j < ind_prn32) prns[ind_prn32+1] = 0;
else {
for (j = ind_prn32+2; j < 12; j++) { if (prns[j] == prns[ind_prn32+1]) break; }
if (j < 12) prns[ind_prn32+1] = 0;
}
if (prns[ind_prn32+1] == 0) { prn32toggle ^= 0x1; }
*/
}
prn32next = prns[ind_prn32+1]; // -> ind_prn32<11 && ind_prn32 % 3 != 2
}
}
}
int calc_satpos_alm(EPHEM_t alm[], double t, SAT_t *satp) {
return -1;
#if 0
double X, Y, Z, vX, vY, vZ;
int j;
int week;
double cl_corr, cl_drift;
for (j = 1; j < 33; j++) {
if (alm[j].prn > 0) { // prn==j
// Woche hat 604800 sec
if (t-alm[j].toa > WEEKSEC/2) rollover = +1;
else if (t-alm[j].toa < -WEEKSEC/2) rollover = -1;
else rollover = 0;
week = alm[j].week - rollover;
/*if (j == 1)*/ gpx.week = week + GPS_WEEK1024*1024;
if (option_vel >= 2) {
GPS_SatellitePositionVelocity_Ephem(
week, t, alm[j],
&cl_corr, &cl_drift, &X, &Y, &Z, &vX, &vY, &vZ
);
satp[alm[j].prn].clock_drift = cl_drift;
satp[alm[j].prn].vX = vX;
satp[alm[j].prn].vY = vY;
satp[alm[j].prn].vZ = vZ;
}
else {
GPS_SatellitePosition_Ephem(
week, t, alm[j],
&cl_corr, &X, &Y, &Z
);
}
satp[alm[j].prn].X = X;
satp[alm[j].prn].Y = Y;
satp[alm[j].prn].Z = Z;
satp[alm[j].prn].clock_corr = cl_corr;
}
}
return 0;
#endif
}
int calc_satpos_rnx(EPHEM_t eph[][24], double t, SAT_t *satp) {
double X, Y, Z, vX, vY, vZ;
int j, i, ti;
int week = 0;
double cl_corr, cl_drift;
double tdiff, td;
for (j = 1; j < 33; j++) {
// Woche hat 604800 sec
tdiff = WEEKSEC;
ti = 0;
for (i = 0; i < 24; i++) {
if (eph[j][i].prn > 0) {
if (t-eph[j][i].toe > WEEKSEC/2) rollover = +1;
else if (t-eph[j][i].toe < -WEEKSEC/2) rollover = -1;
else rollover = 0;
td = t-eph[j][i].toe - rollover*WEEKSEC;
if (td < 0) td *= -1;
if ( td < tdiff ) {
tdiff = td;
ti = i;
week = eph[j][ti].week - rollover;
gpx.week = eph[j][ti].gpsweek - rollover;
}
}
}
if (option_vel >= 2) {
GPS_SatellitePositionVelocity_Ephem(
week, t, eph[j][ti],
&cl_corr, &cl_drift, &X, &Y, &Z, &vX, &vY, &vZ
);
satp[eph[j][ti].prn].clock_drift = cl_drift;
satp[eph[j][ti].prn].vX = vX;
satp[eph[j][ti].prn].vY = vY;
satp[eph[j][ti].prn].vZ = vZ;
}
else {
GPS_SatellitePosition_Ephem(
week, t, eph[j][ti],
&cl_corr, &X, &Y, &Z
);
}
satp[eph[j][ti].prn].X = X;
satp[eph[j][ti].prn].Y = Y;
satp[eph[j][ti].prn].Z = Z;
satp[eph[j][ti].prn].clock_corr = cl_corr;
}
return 0;
}
int calc_satpos_rnx2(EPHEM_t *eph, double t, SAT_t *satp) {
double X, Y, Z, vX, vY, vZ;
int j;
int week = 0;
double cl_corr, cl_drift;
double tdiff, td;
int count, count0, satfound;
for (j = 1; j < 33; j++) {
count = count0 = 1;
satfound = 0;
// Woche hat 604800 sec
tdiff = WEEKSEC;
while (eph[count].prn > 0) {
if (eph[count].prn == j) {
satfound += 1;
if (t - eph[count].toe > WEEKSEC/2) rollover = +1;
else if (t - eph[count].toe < -WEEKSEC/2) rollover = -1;
else rollover = 0;
td = fabs( t - eph[count].toe - rollover*WEEKSEC);
if ( td < tdiff ) {
tdiff = td;
week = eph[count].week - rollover;
gpx.week = eph[count].gpsweek - rollover;
count0 = count;
}
}
count += 1;
}
if ( satfound )
{
if (option_vel >= 2) {
GPS_SatellitePositionVelocity_Ephem(
week, t, eph[count0],
&cl_corr, &cl_drift, &X, &Y, &Z, &vX, &vY, &vZ
);
satp[j].clock_drift = cl_drift;
satp[j].vX = vX;
satp[j].vY = vY;
satp[j].vZ = vZ;
}
else {
GPS_SatellitePosition_Ephem(
week, t, eph[count0],
&cl_corr, &X, &Y, &Z
);
}
satp[j].X = X;
satp[j].Y = Y;
satp[j].Z = Z;
satp[j].clock_corr = cl_corr;
satp[j].ephtime = eph[count0].toe;
}
}
return 0;
}
typedef struct {
uint32_t tow;
uint8_t status;
int chips;
int deltachips;
} RANGE_t;
RANGE_t range[33];
int prn[12]; // valide PRN 0,..,k-1
// pseudo.range = -df*pseudo.chips
// df = lightspeed/(chips/sec)/2^10
const double df = 299792.458/1023.0/1024.0; //0.286183844 // c=299792458m/s, 1023000chips/s
// dl = L1/(chips/sec)/4
const double dl = 1575.42/1.023/4.0; //385.0 // GPS L1 1575.42MHz=154*10.23MHz, dl=154*10/4
double pr_ofs;
double GPSsatAlt = 20200e3;
int get_pseudorange() {
uint32_t gpstime;
uint8_t gpstime_bytes[4];
uint8_t pseudobytes[4];
uint32_t chipbytes, deltabytes;
int i, j, k;
uint8_t bytes[4];
uint16_t byte16;
double pr0, prj;
// GPS-TOW in ms
for (i = 0; i < 4; i++) {
gpstime_bytes[i] = framebyte(posGPS_TOW + i);
}
memcpy(&gpstime, gpstime_bytes, 4);
// Sat Status
Serial.print("Sat status: ");
for (i = 0; i < 12; i++) {
sat_status[i] = framebyte(posGPS_STATUS + i);
Serial.printf("%d:%d ", i, sat_status[i]);
}
Serial.print("\n");
// PRN-Nummern
for (i = 0; i < 4; i++) {
for (j = 0; j < 2; j++) {
bytes[j] = frame[posGPS_PRN+2*i+j];
}
memcpy(&byte16, bytes, 2);
prnbits_le(byte16, prn_le, i);
}
prn12(prn_le, prns);
// GPS Sat Pos (& Vel)
//if (almanac) calc_satpos_alm( alm, gpstime/1000.0, sat);
if (ephem) calc_satpos_rnx2(ephs, gpstime/1000.0, sat);
// GPS Sat Pos t -= 1s
if (option_vel == 1) {
//if (almanac) calc_satpos_alm( alm, gpstime/1000.0-1, sat1s);
if (ephem) calc_satpos_rnx2(ephs, gpstime/1000.0-1, sat1s);
}
k = 0;
for (j = 0; j < 12; j++) {
// Pseudorange/chips
for (i = 0; i < 4; i++) {
pseudobytes[i] = frame[posGPS_DATA+8*j+i];
}
memcpy(&chipbytes, pseudobytes, 4);
//Serial.printf("Chipbytes(%d): %04x\n",j, chipbytes);
// delta_pseudochips / 385
for (i = 0; i < 3; i++) {
pseudobytes[i] = frame[posGPS_DATA+8*j+4+i];
}
deltabytes = 0; // bzw. pseudobytes[3]=0 (24 bit); deltabytes & (0xFF<<24) als
memcpy(&deltabytes, pseudobytes, 3); // gemeinsamer offset relevant in --vel1 !
//if ( (prns[j] == 0) && (sat_status[j] & 0x0F) ) prns[j] = 32;
range[prns[j]].tow = gpstime;
range[prns[j]].status = sat_status[j];
if ( chipbytes == 0x7FFFFFFF || chipbytes == 0x55555555 ) {
range[prns[j]].chips = 0;
continue;
}
if (option_vergps != 8) {
if ( chipbytes > 0x10000000 && chipbytes < 0xF0000000 ) {
range[prns[j]].chips = 0;
continue;
}}
range[prns[j]].chips = chipbytes;
range[prns[j]].deltachips = deltabytes;
/*
if (range[prns[j]].deltachips == 0x555555) {
range[prns[j]].deltachips = 0;
continue;
}
*/
Serial.printf("j=%d: prns=%d status=%d dist=%f\n ", j, prns[j], sat_status[j], dist(sat[prns[j]].X, sat[prns[j]].Y, sat[prns[j]].Z, 0, 0, 0));
//int o=prns[j];
//Serial.printf("x=%f y=%f z=%f\n", sat[o].X, sat[o].Y, sat[o].Z);
if ( (prns[j] > 0) && ((sat_status[j] & 0x0F) == 0xF)
&& (dist(sat[prns[j]].X, sat[prns[j]].Y, sat[prns[j]].Z, 0, 0, 0) > 6700000) )
{
for (i = 0; i < k; i++) { if (prn[i] == prns[j]) break; }
if (i == k && prns[j] != exSat) {
//if ( range[prns[j]].status & 0xF0 ) // Signalstaerke > 0 ?
{
prn[k] = prns[j];
k++;
}
}
}
}
for (j = 0; j < 12; j++) { // 0x013FB0A4
sat[prns[j]].pseudorange = /*0x01400000*/ - range[prns[j]].chips * df;
sat1s[prns[j]].pseudorange = -(range[prns[j]].chips - range[prns[j]].deltachips/dl)*df;
//+ sat[prns[j]].clock_corr - sat1s[prns[j]].clock_corr
sat[prns[j]].pseudorate = - range[prns[j]].deltachips * df / dl;
sat[prns[j]].prn = prns[j];
sat1s[prns[j]].prn = prns[j];
}
pr0 = (double)0x01400000;
for (j = 0; j < k; j++) {
prj = sat[prn[j]].pseudorange + sat[prn[j]].clock_corr;
if (prj < pr0) pr0 = prj;
}
for (j = 0; j < k; j++) sat[prn[j]].PR = sat[prn[j]].pseudorange + sat[prn[j]].clock_corr - pr0 + GPSsatAlt;
// es kann PRNs geben, die zeitweise stark abweichende PR liefern;
// eventuell Standardabweichung ermitteln und fehlerhafte Sats weglassen
for (j = 0; j < k; j++) { // sat/sat1s... PR-check
sat1s[prn[j]].PR = sat1s[prn[j]].pseudorange + sat[prn[j]].clock_corr - pr0 + GPSsatAlt;
}
pr_ofs = pr0;
return k;
}
int get_GPSvel(double lat, double lon, double vel_ecef[3],
double *vH, double *vD, double *vU) {
// ECEF-Velocities
// ECEF-Vel -> NorthEastUp
double phi = lat*M_PI/180.0;
double lam = lon*M_PI/180.0;
double vN = -vel_ecef[0]*sin(phi)*cos(lam) - vel_ecef[1]*sin(phi)*sin(lam) + vel_ecef[2]*cos(phi);
double vE = -vel_ecef[0]*sin(lam) + vel_ecef[1]*cos(lam);
*vU = vel_ecef[0]*cos(phi)*cos(lam) + vel_ecef[1]*cos(phi)*sin(lam) + vel_ecef[2]*sin(phi);
// NEU -> HorDirVer
*vH = sqrt(vN*vN+vE*vE);
*vD = atan2(vE, vN) * 180 / M_PI;
if (*vD < 0) *vD += 360;
return 0;
}
double DOP[4];
int naiv_2Dfix(int N, SAT_t sats[], double alt) {
// simple 2D fix: 3 Sats & Alt above ellipsoid
//
// - fuer 3 unbekannte lat, lon, t braucht man mind. 3 Satelliten
// - fuer Iteration braucht man jedoch einen Startwert
// - es gibt direkte Methoden
// - hier werden die vorhandenen Funktionen benutzt:
// - der 4. Satellit im Erdmittelpunkt
// - seine pseudorange(+clock) wird grob geschaetzt
// (pseudochips liefern erst Rueckschluesse, wenn man Position kennt)
// - dann approximieren, bis Hoehe stimmt
// - bei 3-4 Satelliten ist die DOP-Konstellation oft schlecht
// - moeglicherweise ist in einigen Faellen die 2. Loesung besser
double radius = 6371e3 + alt; // wird dann approximiert
double lat2d, lon2d, alt2d,
pos_ecef[3], rx_cl_bias,
dpos_ecef[3];
//double d;
double rofs = 200000.0, rdiff = 0.0;
int k, k_limit;
double gdop = -1;
sats[3].X = sats[3].Y = sats[3].Z = 0;
k = 0;
k_limit = 100;
if (N >= 3) {
do
{
// PR = pseudorange + clock_corr - pr_ofs + GPSsatAlt
sats[3].X = sats[3].Y = sats[3].Z = 0;
sats[3].PR = radius - rofs;
sats[3].pseudorange = sats[3].PR + pr_ofs - GPSsatAlt;
NAV_bancroft1(4, sats, pos_ecef, &rx_cl_bias);
//NAV_bancroft3(4, sats, pos_ecef1, &rx_cl_bias1, pos_ecef2, &rx_cl_bias2);
ecef2elli(pos_ecef[0], pos_ecef[1], pos_ecef[2], &lat2d, &lon2d, &alt2d);
rdiff = alt-alt2d;
rofs -= rdiff*1.2;
k += 1;
} while (k < k_limit && fabs(rdiff) > 1.0);
NAV_LinP(4, sats, pos_ecef, rx_cl_bias, dpos_ecef, &rx_cl_bias);
// for (j=0;j<3;j++) pos_ecef[j] += dpos_ecef[j];
// NAV_LinP(4, sats, pos_ecef, rx_cl_bias, dpos_ecef, &rx_cl_bias);
// d = dist(0, 0, 0, dpos_ecef[0], dpos_ecef[1], dpos_ecef[2]);
}
if (calc_DOPn(4, sats, pos_ecef, DOP) == 0) {
gdop = sqrt(DOP[0]+DOP[1]+DOP[2]+DOP[3]);
}
//if (gdop > 2*dop_limit) gdop = -1;
//if (gdop < 0) gdop = -1;
gpx.lat = lat2d;
gpx.lon = lon2d;
gpx.alt = alt2d;
gpx.dop = gdop;
if ( fabs(alt2d-alt) > 1000.0 ) return -1;
if ( k == k_limit ) return 0;
return 1;
}
int get_GPSkoord(int N) {
double lat, lon, alt, rx_cl_bias;
double vH, vD, vU;
double lat1s, lon1s, alt1s,
lat0 , lon0 , alt0 , pos0_ecef[3];
double pos_ecef[3], pos1s_ecef[3], dpos_ecef[3],
vel_ecef[3], dvel_ecef[3];
double gdop, gdop0 = 1000.0;
//double hdop, vdop, pdop;
int i0, i1, i2, i3, j, k, n;
int nav_ret = 0;
int num = 0;
SAT_t Sat_A[4];
SAT_t Sat_B[12]; // N <= 12
SAT_t Sat_B1s[12];
SAT_t Sat_C[12]; // 11
double diter = 0;
int exN = -1;
if (option_vergps == 8) {
fprintf(stdout, " sats: ");
for (j = 0; j < N; j++) fprintf(stdout, "%02d ", prn[j]);
fprintf(stdout, "\n");
}
gpx.lat = gpx.lon = gpx.alt = 0;
if (option_vergps != 2) {
for (i0=0;i0<N;i0++) { for (i1=i0+1;i1<N;i1++) { for (i2=i1+1;i2<N;i2++) { for (i3=i2+1;i3<N;i3++) {
Sat_A[0] = sat[prn[i0]];
Sat_A[1] = sat[prn[i1]];
Sat_A[2] = sat[prn[i2]];
Sat_A[3] = sat[prn[i3]];
nav_ret = NAV_ClosedFormSolution_FromPseudorange( Sat_A, &lat, &lon, &alt, &rx_cl_bias, pos_ecef );
if (nav_ret == 0) {
num += 1;
if (calc_DOPn(4, Sat_A, pos_ecef, DOP) == 0) {
gdop = sqrt(DOP[0]+DOP[1]+DOP[2]+DOP[3]);
//fprintf(stdout, " DOP : %.1f ", gdop);
NAV_LinP(4, Sat_A, pos_ecef, rx_cl_bias, dpos_ecef, &rx_cl_bias);
diter = dist(0, 0, 0, dpos_ecef[0], dpos_ecef[1], dpos_ecef[2]);
for (j = 0; j < 3; j++) pos_ecef[j] += dpos_ecef[j];
ecef2elli(pos_ecef[0], pos_ecef[1], pos_ecef[2], &lat, &lon, &alt);
if ( option_vel == 4 ) {
vel_ecef[0] = vel_ecef[1] = vel_ecef[2] = 0;
NAV_LinV(4, Sat_A, pos_ecef, vel_ecef, 0.0, dvel_ecef, &rx_cl_bias);
for (j=0; j<3; j++) vel_ecef[j] += dvel_ecef[j];
NAV_LinV(4, Sat_A, pos_ecef, vel_ecef, rx_cl_bias, dvel_ecef, &rx_cl_bias);
for (j=0; j<3; j++) vel_ecef[j] += dvel_ecef[j];
get_GPSvel(lat, lon, vel_ecef, &vH, &vD, &vU);
}
if (option_vergps == 8) {
// gdop = sqrt(DOP[0]+DOP[1]+DOP[2]+DOP[3]); // s.o.
//hdop = sqrt(DOP[0]+DOP[1]);
//vdop = sqrt(DOP[2]);
//pdop = sqrt(DOP[0]+DOP[1]+DOP[2]);
if (gdop < dop_limit) {
fprintf(stdout, " ");
fprintf(stdout, "lat: %.5f , lon: %.5f , alt: %.1f ", lat, lon, alt);
fprintf(stdout, " (d:%.1f)", diter);
if ( option_vel == 4 ) {
fprintf(stdout, " vH: %4.1f D: %5.1f° vV: %3.1f ", vH, vD, vU);
}
fprintf(stdout, " sats: ");
fprintf(stdout, "%02d %02d %02d %02d ", prn[i0], prn[i1], prn[i2], prn[i3]);
fprintf(stdout, " GDOP : %.1f ", gdop);
//fprintf(stdout, " HDOP: %.1f VDOP: %.1f ", hdop, vdop);
//fprintf(stdout, " PDOP: %.1f ", pdop);
fprintf(stdout, "\n");
}
}
}
else gdop = -1;
if (gdop > 0 && gdop < gdop0) { // wenn fehlerhafter Sat, diter wohl besserer Indikator
gpx.lat = lat;
gpx.lon = lon;
gpx.alt = alt;
gpx.dop = gdop;
gpx.diter = diter;
gpx.sats[0] = prn[i0]; gpx.sats[1] = prn[i1]; gpx.sats[2] = prn[i2]; gpx.sats[3] = prn[i3];
gdop0 = gdop;
if (option_vel == 4) {
gpx.vH = vH;
gpx.vD = vD;
gpx.vU = vU;
}
}
}
}}}}
}
if (option_vergps == 8 || option_vergps == 2) {
for (j = 0; j < N; j++) Sat_B[j] = sat[prn[j]];
for (j = 0; j < N; j++) Sat_B1s[j] = sat1s[prn[j]];
NAV_bancroft1(N, Sat_B, pos_ecef, &rx_cl_bias);
ecef2elli(pos_ecef[0], pos_ecef[1], pos_ecef[2], &lat, &lon, &alt);
gdop = -1;
if (calc_DOPn(N, Sat_B, pos_ecef, DOP) == 0) {
gdop = sqrt(DOP[0]+DOP[1]+DOP[2]+DOP[3]);
}
NAV_LinP(N, Sat_B, pos_ecef, rx_cl_bias, dpos_ecef, &rx_cl_bias);
if (option_iter) {
for (j = 0; j < 3; j++) pos_ecef[j] += dpos_ecef[j];
ecef2elli(pos_ecef[0], pos_ecef[1], pos_ecef[2], &lat, &lon, &alt);
}
gpx.diter = dist(0, 0, 0, dpos_ecef[0], dpos_ecef[1], dpos_ecef[2]);
// Sat mit schlechten Daten suchen
if (gpx.diter > d_err) {
if (N > 5) { // N > 4 kann auch funktionieren
for (n = 0; n < N; n++) {
k = 0;
for (j = 0; j < N; j++) {
if (j != n) {
Sat_C[k] = Sat_B[j];
k++;
}
}
for (j = 0; j < 3; j++) pos0_ecef[j] = 0;
NAV_bancroft1(N-1, Sat_C, pos0_ecef, &rx_cl_bias);
NAV_LinP(N-1, Sat_C, pos0_ecef, rx_cl_bias, dpos_ecef, &rx_cl_bias);
diter = dist(0, 0, 0, dpos_ecef[0], dpos_ecef[1], dpos_ecef[2]);
ecef2elli(pos0_ecef[0], pos0_ecef[1], pos0_ecef[2], &lat0, &lon0, &alt0);
if (diter < gpx.diter) {
gpx.diter = diter;
for (j = 0; j < 3; j++) pos_ecef[j] = pos0_ecef[j];
lat = lat0;
lon = lon0;
alt = alt0;
exN = n;
}
}
if (exN >= 0) {
if (prn[exN] == prn32next) prn32toggle ^= 0x1;
for (k = exN; k < N-1; k++) {
Sat_B[k] = Sat_B[k+1];
prn[k] = prn[k+1];
if (option_vel == 1) {
Sat_B1s[k] = Sat_B1s[k+1];
}
}
N = N-1;
if (calc_DOPn(N, Sat_B, pos_ecef, DOP) == 0) {
gdop = sqrt(DOP[0]+DOP[1]+DOP[2]+DOP[3]);
}
}
}
/*
if (exN < 0 && prn32next > 0) {
//prn32next used in pre-fix? prn32toggle ^= 0x1;
}
*/
}
if (option_vel == 1) {
NAV_bancroft1(N, Sat_B1s, pos1s_ecef, &rx_cl_bias);
if (option_iter) {
NAV_LinP(N, Sat_B1s, pos1s_ecef, rx_cl_bias, dpos_ecef, &rx_cl_bias);
for (j = 0; j < 3; j++) pos1s_ecef[j] += dpos_ecef[j];
}
for (j = 0; j < 3; j++) vel_ecef[j] = pos_ecef[j] - pos1s_ecef[j];
get_GPSvel(lat, lon, vel_ecef, &vH, &vD, &vU);
ecef2elli(pos1s_ecef[0], pos1s_ecef[1], pos1s_ecef[2], &lat1s, &lon1s, &alt1s);
if (option_vergps == 8) {
fprintf(stdout, "\ndeltachips1s lat: %.6f , lon: %.6f , alt: %.2f ", lat1s, lon1s, alt1s);
fprintf(stdout, " vH: %4.1f D: %5.1f° vV: %3.1f ", vH, vD, vU);
fprintf(stdout, "\n");
}
}
if (option_vel >= 2) {
//fprintf(stdout, "\nP(%.1f,%.1f,%.1f) \n", pos_ecef[0], pos_ecef[1], pos_ecef[2]);
vel_ecef[0] = vel_ecef[1] = vel_ecef[2] = 0;
NAV_LinV(N, Sat_B, pos_ecef, vel_ecef, 0.0, dvel_ecef, &rx_cl_bias);
for (j=0; j<3; j++) vel_ecef[j] += dvel_ecef[j];
//fprintf(stdout, " V(%.1f,%.1f,%.1f) ", vel_ecef[0], vel_ecef[1], vel_ecef[2]);
//fprintf(stdout, " rx_vel_bias: %.1f \n", rx_cl_bias);
/* 2. Iteration:
NAV_LinV(N, Sat_B, pos_ecef, vel_ecef, rx_cl_bias, dvel_ecef, &rx_cl_bias);
for (j=0; j<3; j++) vel_ecef[j] += dvel_ecef[j];
//fprintf(stdout, " V(%.1f,%.1f,%.1f) ", vel_ecef[0], vel_ecef[1], vel_ecef[2]);
//fprintf(stdout, " rx_vel_bias: %.1f \n", rx_cl_bias);
*/
get_GPSvel(lat, lon, vel_ecef, &vH, &vD, &vU);
}
if (option_vergps == 8) {
fprintf(stdout, "bancroft[%2d] lat: %.6f , lon: %.6f , alt: %.2f ", N, lat, lon, alt);
fprintf(stdout, " (d:%.1f)", gpx.diter);
if (option_vel) {
fprintf(stdout, " vH: %4.1f D: %5.1f° vV: %3.1f ", vH, vD, vU);
}
fprintf(stdout, " DOP[");
for (j = 0; j < N; j++) {
fprintf(stdout, "%d", prn[j]);
if (j < N-1) fprintf(stdout, ","); else fprintf(stdout, "] %.1f ", gdop);
}
fprintf(stdout, "\n");
}
if (option_vergps == 2) {
gpx.lat = lat;
gpx.lon = lon;
gpx.alt = alt;
gpx.dop = gdop;
num = N;
if (option_vel) {
gpx.vH = vH;
gpx.vD = vD;
gpx.vU = vU;
}
}
}
return num;
}
/* ------------------------------------------------------------------------------------ */
int print_position() { // GPS-Hoehe ueber Ellipsoid
int j, k = 0, n = 0;
int err1, err2, fix2d = 0;
err1 = 0;
if (!option_verbose) err1 = err_gps;
err1 |= get_FrameNb();
err1 |= get_SondeID();
err2 = err1 | err_gps;
//err2 |= get_GPSweek();
err2 |= get_GPStime();
#if 0
Serial.printf("ephem=%d\n",ephem);
Serial.printf("print_position: ephs is %p\n", ephs);
#endif
if (!err2 && (almanac || ephem)) {
k = get_pseudorange();
gpx.k = k;
Serial.printf("k=%d\n", k);
if (k >= 4) {
n = get_GPSkoord(k);
}
if (k == 3) {
SAT_t Sat_A[4];
for (j = 0; j < 3; j++) { Sat_A[j] = sat[prn[j]]; }
fix2d = naiv_2Dfix( 3, Sat_A, sonde.config.rs92.alt2d);
}
}
if (!err1) {
fprintf(stdout, "[%5d] ", gpx.frnr);
fprintf(stdout, "(%s) ", gpx.id);
}
if (!err2) {
if (option_verbose) {
Gps2Date(gpx.week, gpx.gpssec, &gpx.jahr, &gpx.monat, &gpx.tag);
//fprintf(stdout, "(W %d) ", gpx.week);
fprintf(stdout, "(%04d-%02d-%02d) ", gpx.jahr, gpx.monat, gpx.tag);
}
fprintf(stdout, "%s ", weekday[gpx.wday]); // %04.1f: wenn sek >= 59.950, wird auf 60.0 gerundet
fprintf(stdout, "%02d:%02d:%06.3f", gpx.std, gpx.min, gpx.sek);
if (k == 3 && fix2d > 0 && gpx.dop > 0 && gpx.dop < 2*dop_limit) {
fprintf(stdout, " 2D lat: %.5f lon: %.5f alt: %.1f ", gpx.lat, gpx.lon, gpx.alt);
fprintf(stdout, " DOP[%02d,%02d,%02d,0] %.1f ", prn[0], prn[1], prn[2], gpx.dop);
}
else if (n > 0) {
fprintf(stdout, " ");
if (almanac) fprintf(stdout, " lat: %.4f lon: %.4f alt: %.1f ", gpx.lat, gpx.lon, gpx.alt);
else fprintf(stdout, " lat: %.5f lon: %.5f alt: %.1f ", gpx.lat, gpx.lon, gpx.alt);
if (option_verbose && option_vergps != 8) {
fprintf(stdout, " (d:%.1f)", gpx.diter);
}
if (option_vel /*&& option_vergps >= 2*/) {
fprintf(stdout," vH: %4.1f D: %5.1f° vV: %3.1f ", gpx.vH, gpx.vD, gpx.vU);
}
if (option_verbose) {
if (option_vergps != 2) {
fprintf(stdout, " DOP[%02d,%02d,%02d,%02d] %.1f",
gpx.sats[0], gpx.sats[1], gpx.sats[2], gpx.sats[3], gpx.dop);
}
else { // wenn option_vergps=2, dann n=N=k(-1)
fprintf(stdout, " DOP[");
for (j = 0; j < n; j++) {
fprintf(stdout, "%d", prn[j]);
if (j < n-1) fprintf(stdout, ","); else fprintf(stdout, "] %.1f ", gpx.dop);
}
}
}
}
get_Cal();
if (option_vergps == 8 /*|| option_vergps == 2*/)
{
fprintf(stdout, "\n");
for (j = 0; j < 60; j++) { fprintf(stdout, "%d", prn_le[j]); if (j % 5 == 4) fprintf(stdout, " "); }
fprintf(stdout, ": ");
for (j = 0; j < 12; j++) fprintf(stdout, "%2d ", prns[j]);
fprintf(stdout, "\n");
fprintf(stdout, " status: ");
for (j = 0; j < 12; j++) fprintf(stdout, "%02X ", sat_status[j]); //range[prns[j]].status
fprintf(stdout, "\n");
}
}
if (!err1) {
fprintf(stdout, "\n");
//if (option_vergps == 8) fprintf(stdout, "\n");
}
return err2;
}
void print_frame(uint8_t *data, int len) {
int i;
uint8_t byte;
for (i = 0; i<len; i++) {
frame[i] = data[i];
}
for (i = len; i < FRAME_LEN; i++) {
frame[i] = 0;
}
if (option_raw) {
for (i = 0; i < len; i++) {
//byte = frame[i];
byte = framebyte(i);
fprintf(stdout, "%02x", byte);
}
fprintf(stdout, "\n");
}
//Serial.printf("print_frame: ephs is %p\n", ephs);
print_position();
}
void get_eph(const char *file) {
ephs = read_RNXpephs(file);
if (ephs) {
ephem = 1;
almanac = 0;
}
Serial.printf("reading RNX done, result is %d, ephs=%p\n", ephem, ephs);
if (!option_der) d_err = 1000;
}
#if 0
int main(int argc, char *argv[]) {
FILE *fp, *fp_alm = NULL, *fp_eph = NULL;
char *fpname;
char bitbuf[BITS];
int bit_count = 0,
byte_count = FRAMESTART,
header_found = 0,
byte, i;
int bit, len;
char *pbuf = NULL;
#ifdef CYGWIN
_setmode(_fileno(stdin), _O_BINARY);
#endif
setbuf(stdout, NULL);
fpname = argv[0];
++argv;
while ((*argv) && (!fileloaded)) {
if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) {
Serial.printf("%s [options] <file>\n", fpname);
Serial.printf(" file: audio.wav or raw_data\n");
Serial.printf(" options:\n");
Serial.printf(" --vel; --vel1, --vel2 (-g2)\n");
Serial.printf(" -v, -vx, -vv\n");
Serial.printf(" -r, --raw\n");
Serial.printf(" -i, --invert\n");
Serial.printf(" -a, --almanac <almanacSEM>\n");
Serial.printf(" -e, --ephem <ephemperisRinex>\n");
Serial.printf(" -g1 (verbose GPS: 4 sats)\n");
Serial.printf(" -g2 (verbose GPS: all sats)\n");
Serial.printf(" -gg (vverbose GPS)\n");
Serial.printf(" --crc (CRC check GPS)\n");
Serial.printf(" --rawin1,2 (raw_data file)\n");
return 0;
}
else if ( (strcmp(*argv, "--vel") == 0) ) {
option_vel = 4;
}
else if ( (strcmp(*argv, "--vel1") == 0) ) {
option_vel = 1;
if (option_vergps < 1) option_vergps = 2;
}
else if ( (strcmp(*argv, "--vel2") == 0) ) {
option_vel = 2;
if (option_vergps < 1) option_vergps = 2;
}
else if ( (strcmp(*argv, "--iter") == 0) ) {
option_iter = 1;
}
else if ( (strcmp(*argv, "-v") == 0) ) {
option_verbose = 1;
}
else if ( (strcmp(*argv, "-vv") == 0) ) {
option_verbose = 4;
}
else if ( (strcmp(*argv, "-vx") == 0) ) {
option_aux = 1;
}
else if (strcmp(*argv, "--crc") == 0) { option_crc = 1; }
else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) {
option_raw = 1;
}
else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) {
option_inv = 1;
}
else if ( (strcmp(*argv, "-a") == 0) || (strcmp(*argv, "--almanac") == 0) ) {
++argv;
if (*argv) fp_alm = fopen(*argv, "r"); // txt-mode
else return -1;
if (fp_alm == NULL) Serial.printf("[almanac] %s konnte nicht geoeffnet werden\n", *argv);
}
else if ( (strcmp(*argv, "-e") == 0) || (strncmp(*argv, "--ephem", 7) == 0) ) {
++argv;
if (*argv) fp_eph = fopen(*argv, "rb"); // bin-mode
else return -1;
if (fp_eph == NULL) Serial.printf("[rinex] %s konnte nicht geoeffnet werden\n", *argv);
}
else if ( (strcmp(*argv, "--dop") == 0) ) {
++argv;
if (*argv) {
dop_limit = atof(*argv);
if (dop_limit <= 0 || dop_limit >= 100) dop_limit = 9.9;
}
else return -1;
}
else if ( (strcmp(*argv, "--der") == 0) ) {
++argv;
if (*argv) {
d_err = atof(*argv);
if (d_err <= 0 || d_err >= 100000) d_err = 10000;
else option_der = 1;
}
else return -1;
}
else if ( (strcmp(*argv, "--exsat") == 0) ) {
++argv;
if (*argv) {
exSat = atoi(*argv);
if (exSat < 1 || exSat > 32) exSat = -1;
}
else return -1;
}
else if (strcmp(*argv, "-g1") == 0) { option_vergps = 1; } // verbose1 GPS
else if (strcmp(*argv, "-g2") == 0) { option_vergps = 2; } // verbose2 GPS (bancroft)
else if (strcmp(*argv, "-gg") == 0) { option_vergps = 8; } // vverbose GPS
else if (strcmp(*argv, "--rawin1") == 0) { rawin = 2; } // raw_txt input1
else if (strcmp(*argv, "--rawin2") == 0) { rawin = 3; } // raw_txt input2 (SM)
else if ( (strcmp(*argv, "--avg") == 0) ) {
option_avg = 1;
}
else if (strcmp(*argv, "-b") == 0) { option_b = 1; }
else {
if (!rawin) fp = fopen(*argv, "rb");
else fp = fopen(*argv, "r");
if (fp == NULL) {
Serial.printf("%s konnte nicht geoeffnet werden\n", *argv);
return -1;
}
fileloaded = 1;
}
++argv;
}
if (!fileloaded) fp = stdin;
if (fp_alm) {
i = read_SEMalmanac(fp_alm, alm);
if (i == 0) {
almanac = 1;
}
fclose(fp_alm);
if (!option_der) d_err = 4000;
}
if (fp_eph) {
/* i = read_RNXephemeris(fp_eph, eph);
if (i == 0) {
ephem = 1;
almanac = 0;
}
fclose(fp_eph); */
ephs = read_RNXpephs(fp_eph);
if (ephs) {
ephem = 1;
almanac = 0;
}
fclose(fp_eph);
if (!option_der) d_err = 1000;
}
if (!rawin) {
i = read_wav_header(fp);
if (i) {
fclose(fp);
return -1;
}
while (!read_bits_fsk(fp, &bit, &len)) {
if (len == 0) { // reset_frame();
if (byte_count > pos_SondeID+8) {
if (byte_count < FRAME_LEN-20) err_gps = 1;
print_frame(byte_count);
err_gps = 0;
}
bit_count = 0;
byte_count = FRAMESTART;
header_found = 0;
inc_bufpos();
buf[bufpos] = 'x';
continue; // ...
}
for (i = 0; i < len; i++) {
inc_bufpos();
buf[bufpos] = 0x30 + bit; // Ascii
if (!header_found) {
if (compare() >= HEADLEN) header_found = 1;
}
else {
bitbuf[bit_count] = bit;
bit_count++;
if (bit_count == BITS) {
bit_count = 0;
byte = bits2byte(bitbuf);
frame[byte_count] = byte;
byte_count++;
if (byte_count == FRAME_LEN) {
byte_count = FRAMESTART;
header_found = 0;
//inc_bufpos();
//buf[bufpos] = 'x';
print_frame(FRAME_LEN);
}
}
}
}
if (header_found && option_b) {
bitstart = 1;
while ( byte_count < FRAME_LEN ) {
if (read_rawbit(fp, &bit) == EOF) break;
bitbuf[bit_count] = bit;
bit_count++;
if (bit_count == BITS) {
bit_count = 0;
byte = bits2byte(bitbuf);
frame[byte_count] = byte;
byte_count++;
}
}
header_found = 0;
print_frame(byte_count);
byte_count = FRAMESTART;
}
}
}
else //if (rawin)
{
if (rawin == 3) frameofs = 5;
while (1 > 0) {
pbuf = fgets(buffer_rawin, rawin*FRAME_LEN+4, fp);
if (pbuf == NULL) break;
buffer_rawin[rawin*FRAME_LEN+1] = '\0';
len = strlen(buffer_rawin) / rawin;
if (len > pos_SondeID+8) {
for (i = 0; i < len-frameofs; i++) { //%2x SCNx8=%hhx(inttypes.h)
sscanf(buffer_rawin+rawin*i, "%2hhx", frame+frameofs+i);
// wenn ohne %hhx: sscanf(buffer_rawin+rawin*i, "%2x", &byte); frame[frameofs+i] = (uint8_t)byte;
}
if (len < FRAME_LEN-20) err_gps = 1;
print_frame(len);
err_gps = 0;
}
}
}
free(ephs);
fclose(fp);
return 0;
}
#endif