/*---------------------------------------------------------------------------*\
FILE........: newamp2.c
AUTHOR......: Thomas Kurin and Stefan Erhardt
INSTITUTE...: Institute for Electronics Engineering, University of Erlangen-Nuremberg
DATE CREATED: July 2018
BASED ON....: "newamp1" by David Rowe
Quantisation functions for the sinusoidal coder, using "newamp1"
algorithm that resamples variable rate L [Am} to a fixed rate K then
VQs.
\*---------------------------------------------------------------------------*/
/*
Copyright David Rowe 2017
All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License version 2.1, as
published by the Free Software Foundation. This program is
distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, see .
*/
#include
#include
#include
#include
#include
#include "defines.h"
#include "phase.h"
#include "quantise.h"
#include "mbest.h"
#include "newamp1.h"
#include "newamp2.h"
/*---------------------------------------------------------------------------*\
FUNCTION....: n2_mel_sample_freqs_kHz()
AUTHOR......: Thomas Kurin and Stefan Erhardt
INSTITUTE...: Institute for Electronics Engineering, University of Erlangen-Nuremberg
DATE CREATED: July 2018
Outputs fixed frequencies for the K-Vectors to be able to work with both 8k and 16k mode.
\*---------------------------------------------------------------------------*/
void n2_mel_sample_freqs_kHz(float rate_K_sample_freqs_kHz[], int K)
{
float freq[] = {0.199816, 0.252849, 0.309008, 0.368476, 0.431449, 0.498134, 0.568749, 0.643526, 0.722710, 0.806561, 0.895354, 0.989380,
1.088948, 1.194384, 1.306034, 1.424264, 1.549463, 1.682041, 1.822432, 1.971098, 2.128525, 2.295232, 2.471763, 2.658699,
2.856652, 3.066272, 3.288246, 3.523303, 3.772214, 4.035795, 4.314912, 4.610478, 4.923465, 5.254899, 5.605865, 5.977518,
6.371075, 6.787827, 7.229141, 7.696465};
int k;
//printf("\n\n");
for (k=0; kL; m++) {
AmdB[m] = 20.0*log10(model->A[m]+1E-16);
if (AmdB[m] > AmdB_peak) {
AmdB_peak = AmdB[m];
}
rate_L_sample_freqs_kHz[m] = m*model->Wo*(c2const->Fs/2000.0)/M_PI;
//printf("m: %d AmdB: %f AmdB_peak: %f sf: %f\n", m, AmdB[m], AmdB_peak, rate_L_sample_freqs_kHz[m]);
}
/* clip between peak and peak -50dB, to reduce dynamic range */
for(m=1; m<=model->L; m++) {
if (AmdB[m] < (AmdB_peak-50.0)) {
AmdB[m] = AmdB_peak-50.0;
}
}
interp_para(rate_K_vec, &rate_L_sample_freqs_kHz[1], &AmdB[1], model->L, rate_K_sample_freqs_kHz, K);
}
/*---------------------------------------------------------------------------*\
FUNCTION....: n2_rate_K_mbest_encode
AUTHOR......: Thomas Kurin and Stefan Erhardt
INSTITUTE...: Institute for Electronics Engineering, University of Erlangen-Nuremberg
DATE CREATED: July 2018
One stage rate K newamp2 VQ quantiser using mbest search.
\*---------------------------------------------------------------------------*/
void n2_rate_K_mbest_encode(int *indexes, float *x, float *xq, int ndim)
{
int i, n1;
const float *codebook1 = newamp2vq_cb[0].cb;
struct MBEST *mbest_stage1;
float w[ndim];
int index[1];
/* codebook is compiled for a fixed K */
//assert(ndim == newamp2vq_cb[0].k);
/* equal weights, could be argued mel freq axis gives freq dep weighting */
for(i=0; ilist[0].index[0];
mbest_destroy(mbest_stage1);
//indexes[1]: legacy from newamp1
indexes[0] = n1; indexes[1] = n1;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: n2_resample_rate_L
AUTHOR......: Thomas Kurin and Stefan Erhardt
INSTITUTE...: Institute for Electronics Engineering, University of Erlangen-Nuremberg
DATE CREATED: July 2018
Decoder side conversion of rate K vector back to rate L.
Plosives are set to zero for the first 2 of 4 frames.
\*---------------------------------------------------------------------------*/
void n2_resample_rate_L(C2CONST *c2const, MODEL *model, float rate_K_vec[], float rate_K_sample_freqs_kHz[], int K,int plosive_flag)
{
float rate_K_vec_term[K+2], rate_K_sample_freqs_kHz_term[K+2];
float AmdB[MAX_AMP+1], rate_L_sample_freqs_kHz[MAX_AMP+1];
int m,k;
/* terminate either end of the rate K vecs with 0dB points */
rate_K_vec_term[0] = rate_K_vec_term[K+1] = 0.0;
rate_K_sample_freqs_kHz_term[0] = 0.0;
rate_K_sample_freqs_kHz_term[K+1] = 4.0;
for(k=0; kL; m++) {
rate_L_sample_freqs_kHz[m] = m*model->Wo*(c2const->Fs/2000.0)/M_PI;
}
interp_para(&AmdB[1], rate_K_sample_freqs_kHz_term, rate_K_vec_term, K+2, &rate_L_sample_freqs_kHz[1], model->L);
for(m=1; m<=model->L; m++) {
if(plosive_flag==0){
model->A[m] = pow(10.0, AmdB[m]/20.0);
}else{
model->A[m] = 0.1;
}
// printf("m: %d f: %f AdB: %f A: %f\n", m, rate_L_sample_freqs_kHz[m], AmdB[m], model->A[m]);
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: n2_post_filter_newamp2
AUTHOR......: Thomas Kurin and Stefan Erhardt
INSTITUTE...: Institute for Electronics Engineering, University of Erlangen-Nuremberg
DATE CREATED: July 2018
Postfilter for the pseudo wideband mode. Still has to be adapted!
\*---------------------------------------------------------------------------*/
void n2_post_filter_newamp2(float vec[], float sample_freq_kHz[], int K, float pf_gain)
{
int k;
/*
vec is rate K vector describing spectrum of current frame lets
pre-emp before applying PF. 20dB/dec over 300Hz. Postfilter
affects energy of frame so we measure energy before and after
and normalise. Plenty of room for experiment here as well.
*/
float pre[K];
float e_before = 0.0;
float e_after = 0.0;
for(k=0; kvoiced) {
int index = encode_log_Wo(c2const, model->Wo, 6);
if (index == 0) {
index = 1;
}
if (index == 63) {
index = 62;
}
indexes[3] = index;
}
else {
indexes[3] = 0;
}
if(plosive != 0){
indexes[3] = 63;
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: newamp2_indexes_to_rate_K_vec
AUTHOR......: Thomas Kurin and Stefan Erhardt
INSTITUTE...: Institute for Electronics Engineering, University of Erlangen-Nuremberg
DATE CREATED: July 2018
newamp2 decoder for amplitudes {Am}. Given the rate K VQ and energy
indexes, outputs rate K vector. Equal to newamp1 but using only one stage VQ.
\*---------------------------------------------------------------------------*/
void newamp2_indexes_to_rate_K_vec(float rate_K_vec_[],
float rate_K_vec_no_mean_[],
float rate_K_sample_freqs_kHz[],
int K,
float *mean_,
int indexes[],
float pf_gain)
{
int k;
const float *codebook1 = newamp2vq_cb[0].cb;
int n1 = indexes[0];
for(k=0; kmean2)
\*---------------------------------------------------------------------------*/
void newamp2_16k_indexes_to_rate_K_vec(float rate_K_vec_[],
float rate_K_vec_no_mean_[],
float rate_K_sample_freqs_kHz[],
int K,
float *mean_,
int indexes[],
float pf_gain)
{
int k;
const float *codebook1 = newamp2vq_cb[0].cb;
float mean2 = 0;
int n1 = indexes[0];
for(k=0; k50){
mean2 = 50;
}
for(k=0; k0 && indexes[3]<63) {
Wo_right = decode_log_Wo(c2const, indexes[3], 6);
voicing_right = 1;
}
//Unvoiced
else if(indexes[3] == 0){
Wo_right = 2.0*M_PI/100.0;
voicing_right = 0;
}
//indexes[3]=63 (= Plosive) and unvoiced
else {
Wo_right = 2.0*M_PI/100.0;
voicing_right = 0;
plosive_flag = 1;
}
/* interpolate 25Hz rate K vec back to 100Hz */
float *left_vec = prev_rate_K_vec_;
float *right_vec = rate_K_vec_;
newamp2_interpolate(interpolated_surface_, left_vec, right_vec, K,plosive_flag);
/* interpolate 25Hz v and Wo back to 100Hz */
float aWo_[M];
int avoicing_[M], aL_[M], i;
interp_Wo_v(aWo_, aL_, avoicing_, *Wo_left, Wo_right, *voicing_left, voicing_right);
/* back to rate L amplitudes, synthesis phase for each frame */
for(i=0; i0){
//First two frames are set to zero
if (i<2){
n2_resample_rate_L(c2const, &model_[i], &interpolated_surface_[K*i], rate_K_sample_freqs_kHz, K,1);
}
else{
n2_resample_rate_L(c2const, &model_[i], &interpolated_surface_[K*i], rate_K_sample_freqs_kHz, K,0);
}
}
//No Plosive, standard resample
else{
n2_resample_rate_L(c2const, &model_[i], &interpolated_surface_[K*i], rate_K_sample_freqs_kHz, K,0);
}
determine_phase(c2const, &H[(MAX_AMP+1)*i], &model_[i], NEWAMP2_PHASE_NFFT, fwd_cfg, inv_cfg);
}
/* update memories for next time */
for(k=0; k