251 lines
5.4 KiB
C
Executable File
251 lines
5.4 KiB
C
Executable File
/*---------------------------------------------------------------------------*\
|
|
|
|
FILE........: dct2.c
|
|
AUTHOR......: Phil Ayres
|
|
DATE CREATED: July 2017
|
|
|
|
* DCT functions based on existing Codec 2 FFT
|
|
*
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
Copyright David Rowe 2017
|
|
|
|
All rights reserved.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License version 2.1, as
|
|
published by the Free Software Foundation. This program is
|
|
distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
#include "dct2.h"
|
|
|
|
|
|
/*
|
|
* Call dct_config with the number of parameters to be supplied to a subsequent
|
|
* DCT or DCT2 function. Returns a configuration that must be
|
|
* passed as the initial argument to the subsequent calls.
|
|
*/
|
|
codec2_dct_cfg dct_config(int P)
|
|
{
|
|
return codec2_fftr_alloc(P * 2, 0, NULL, NULL);
|
|
}
|
|
|
|
/*
|
|
* Call idct_config with the number of parameters to be supplied to a subsequent
|
|
* inverse DCT or inverse DCT2 function. Returns a configuration that must be
|
|
* passed as the initial argument to the subsequent calls.
|
|
*/
|
|
codec2_dct_cfg idct_config(int P)
|
|
{
|
|
return codec2_fftr_alloc(P * 2, 1, NULL, NULL);
|
|
}
|
|
|
|
/*
|
|
* Free memory from previous dct_config() and idct_config() calls
|
|
*/
|
|
void dct_cfg_free(codec2_dct_cfg cfg)
|
|
{
|
|
codec2_fft_free((codec2_fft_cfg)cfg);
|
|
}
|
|
|
|
|
|
/*
|
|
* 1-dimensional DCT, taking and returning only the real components of the result.
|
|
* The implementation relies on the real FFT used elsewhere within Codec 2, ensuring
|
|
* that any optimisations of the complex code are reused, rather than reimplemented.
|
|
*/
|
|
void dct(codec2_dct_cfg cfg, const int N, float y[N], float res[N])
|
|
{
|
|
|
|
int i;
|
|
float y2[2 * N]; // input to FFT will be double the size of the input
|
|
COMP c[N + 1];
|
|
COMP phi[N];
|
|
|
|
for (i = 0; i < N; i++) {
|
|
y2[i] = y[i];
|
|
y2[N + i] = y[N - 1 - i];
|
|
}
|
|
|
|
codec2_fftr(cfg, y2, c);
|
|
|
|
for (i = 0; i < N; i++) {
|
|
float p;
|
|
if (i == 0)
|
|
p = 0;
|
|
else
|
|
p = -1 * PI * i / (2 * N);
|
|
phi[i] = comp_exp_j(p);
|
|
res[i] = cmult(phi[i], c[i]).real;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* 2-dimensional DCT, using and returning only the real components.
|
|
* Built on the 1-D DCT.
|
|
*/
|
|
|
|
void dct2(codec2_dct_cfg cfg_m, codec2_dct_cfg cfg_n, const int M, const int N, float y[M][N], float res[M][N])
|
|
{
|
|
float a[M][N];
|
|
|
|
int i;
|
|
int j;
|
|
for (i = 0; i < M; i++) {
|
|
dct(cfg_n, N, y[i], a[i]);
|
|
}
|
|
|
|
|
|
float a_tran[N][M];
|
|
|
|
float b_tran[N][M];
|
|
// for (j = 0; j < N; j++) {
|
|
// for (i = 0; i < M; i++) {
|
|
// a_col[i] = a[i][j];
|
|
// }
|
|
//
|
|
// dct(cfg, M, a_col, b_col);
|
|
//
|
|
// for (i = 0; i < M; i++) {
|
|
// res[i][j] = b_col[i];
|
|
// }
|
|
// }
|
|
|
|
// for i in range(M):
|
|
// a[i,:] = dct(y[i,:])
|
|
|
|
for(i=0; i<M; i++){
|
|
dct(cfg_n, N, y[i], a[i]);
|
|
|
|
for(j=0; j<N;j++){
|
|
a_tran[j][i] = a[i][j];
|
|
}
|
|
|
|
// printf("y[i,:]= ");
|
|
// for(j=0; j<N;j++){
|
|
// printf("%f ", y[i][j]);
|
|
// }
|
|
// printf("\n");
|
|
//
|
|
// printf("a[i,:]= ");
|
|
// for(j=0; j<N;j++){
|
|
// printf("%f ", a[i][j]);
|
|
// }
|
|
// printf("\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
// for j in range(N):
|
|
// b[:,j] = dct(a[:,j])
|
|
|
|
|
|
for(j=0; j<N;j++){
|
|
|
|
dct(cfg_m, M, a_tran[j], b_tran[j]);
|
|
|
|
for(i=0; i<M; i++){
|
|
res[i][j] = b_tran[j][i];
|
|
}
|
|
|
|
// printf("a[:,j]= ");
|
|
// for(i=0; i<M;i++){
|
|
// printf("%f ", a_tran[j][i]);
|
|
// }
|
|
// printf("\n");
|
|
//
|
|
// printf("b[:,j]= ");
|
|
// for(i=0; i<M;i++){
|
|
// printf("%f ", b_tran[j][i]);
|
|
// }
|
|
// printf("\n");
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
* Inverse DCT 1-dimensional.
|
|
*/
|
|
|
|
void idct(codec2_dct_cfg cfg, const int N, float a[N], float res[N])
|
|
{
|
|
|
|
int nfft = N * 2;
|
|
int i;
|
|
COMP ac;
|
|
COMP c[N + 1];
|
|
COMP phi[N];
|
|
float res_fft[nfft];
|
|
|
|
assert(cfg);
|
|
|
|
for (i = 0; i < N; i++) {
|
|
float p;
|
|
p = PI * i / (2 * N);
|
|
phi[i] = comp_exp_j(p);
|
|
//printf("phi: %f+%fj\n", phi[i].real, phi[i].imag);
|
|
ac.real = a[i];
|
|
ac.imag = 0;
|
|
c[i] = cmult(phi[i], ac);
|
|
//printf("c: %f+%fj\n", c[i].real, c[i].imag);
|
|
}
|
|
|
|
c[N].real = 0;
|
|
c[N].imag = 0;
|
|
|
|
codec2_fftri(cfg, c, res_fft);
|
|
|
|
// Scale the result
|
|
for(i=0;i<N; i++){
|
|
res[i] = res_fft[i] / nfft;
|
|
//printf("res: %f\n", res[i]);
|
|
}
|
|
|
|
|
|
}
|
|
|
|
/*
|
|
* Inverse DCT 2-dimensional
|
|
*/
|
|
void idct2(codec2_dct_cfg cfg_m, codec2_dct_cfg cfg_n, int M, int N, float y[M][N], float res[M][N])
|
|
{
|
|
|
|
float a[M][N];
|
|
|
|
int i;
|
|
int j;
|
|
for (i = 0; i < M; i++) {
|
|
idct(cfg_n, N, y[i], a[i]);
|
|
}
|
|
|
|
float a_col[M];
|
|
float b_col[M];
|
|
|
|
for (j = 0; j < N; j++) {
|
|
for (i = 0; i < M; i++) {
|
|
a_col[i] = a[i][j];
|
|
}
|
|
|
|
idct(cfg_m, M, a_col, b_col);
|
|
|
|
for (i = 0; i < M; i++) {
|
|
res[i][j] = b_col[i];
|
|
}
|
|
}
|
|
|
|
}
|