UHSDR/UHSDR-active-devel/mchf-eclipse/misc/test_fdmdv.c
2022-11-08 16:13:55 +01:00

368 lines
15 KiB
C

/*---------------------------------------------------------------------------*\
FILE........: tfdmdv.c
AUTHOR......: David Rowe
DATE CREATED: April 16 2012
Tests for the C version of the FDMDV modem. This program outputs a
file of Octave vectors that are loaded and automatically tested
against the Octave version of the modem by the Octave script
tfmddv.m
\*---------------------------------------------------------------------------*/
/*
Copyright (C) 2012 David Rowe
All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License version 2, as
published by the Free Software Foundation. This program is
distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "fdmdv_internal.h"
#include "codec2_fdmdv.h"
#include "octave.h"
#ifdef ARM_MATH_CM4
#include "Trace.h"
#define FPRINTF(f,...) trace_printf(__VA_ARGS__)
#else
#define FPRINTF(...) fprintf(__VA_ARGS__)
#endif
#include "profiling.h"
// 0 -> each frame is stored separately
// 1 -> after all frames store all data, this is currently required for
// octave analysis
#define CUMULATIVE 0
// 0 -> Minimal memory consumption, can be run on targets with little memory
// 1 -> normal memory consumption, this is currently required for
// octave analisys
#define MULTIFRAME 0
#if MULTIFRAME
#define FRAMERUNS 1 // number of runs
#define FRAMES 35 // allocate space for n frames
#define FRAMEINCR 35 // number of frames to process per run
#else
#define FRAMERUNS 35
#define FRAMES 1
#define FRAMEINCR 1
#endif
#define CHANNEL_BUF_SIZE (10*M_FAC)
FILE *fout;
struct FDMDV *fdmdv;
extern float pilot_coeff[];
float channel[CHANNEL_BUF_SIZE];
int channel_count;
int run(int cumulativeOutput, int numberOfRuns, int currentRun, int next_nin)
{
int tx_bits[FDMDV_BITS_PER_FRAME];
COMP tx_symbols[FDMDV_NC+1];
COMP tx_fdm[M_FAC];
COMP rx_fdm[M_FAC+M_FAC/P];
float foff_coarse;
int nin;
COMP rx_fdm_fcorr[M_FAC+M_FAC/P];
COMP rx_fdm_filter[M_FAC+M_FAC/P];
COMP rx_filt[NC+1][P+1];
float rx_timing;
float env[NT*P];
COMP rx_symbols[FDMDV_NC+1];
int rx_bits[FDMDV_BITS_PER_FRAME];
float foff_fine;
int sync_bit, reliable_sync_bit;
int tx_bits_log[FDMDV_BITS_PER_FRAME*FRAMES];
COMP tx_symbols_log[(FDMDV_NC+1)*FRAMES];
COMP tx_fdm_log[M_FAC*FRAMES];
COMP pilot_baseband1_log[NPILOTBASEBAND*FRAMES];
COMP pilot_baseband2_log[NPILOTBASEBAND*FRAMES];
COMP pilot_lpf1_log[NPILOTLPF*FRAMES];
COMP pilot_lpf2_log[NPILOTLPF*FRAMES];
COMP S1_log[MPILOTFFT*FRAMES];
COMP S2_log[MPILOTFFT*FRAMES];
float foff_coarse_log[FRAMES];
float foff_log[FRAMES];
COMP rx_fdm_filter_log[(M_FAC+M_FAC/P)*FRAMES];
int rx_fdm_filter_log_index;
COMP rx_filt_log[NC+1][(P+1)*FRAMES];
int rx_filt_log_col_index;
float env_log[NT*P*FRAMES];
float rx_timing_log[FRAMES];
COMP rx_symbols_log[FDMDV_NC+1][FRAMES];
COMP phase_difference_log[FDMDV_NC+1][FRAMES];
float sig_est_log[FDMDV_NC+1][FRAMES];
float noise_est_log[FDMDV_NC+1][FRAMES];
int rx_bits_log[FDMDV_BITS_PER_FRAME*FRAMES];
float foff_fine_log[FRAMES];
int sync_bit_log[FRAMES];
int sync_log[FRAMES];
int nin_log[FRAMES];
int f,c,i,j,r;
rx_fdm_filter_log_index = 0;
rx_filt_log_col_index = 0;
printf("sizeof FDMDV states: %zd bytes\n", sizeof(struct FDMDV));
for(r=0; r<numberOfRuns; r++) {
f = (currentRun*numberOfRuns+r)%FRAMES;
/* --------------------------------------------------------*\
Modulator
\*---------------------------------------------------------*/
fdmdv_get_test_bits(fdmdv, tx_bits);
bits_to_dqpsk_symbols(tx_symbols, FDMDV_NC, fdmdv->prev_tx_symbols, tx_bits, &fdmdv->tx_pilot_bit, 0);
memcpy(fdmdv->prev_tx_symbols, tx_symbols, sizeof(COMP)*(FDMDV_NC+1));
tx_filter_and_upconvert(tx_fdm, FDMDV_NC , tx_symbols, fdmdv->tx_filter_memory,
fdmdv->phase_tx, fdmdv->freq, &fdmdv->fbb_phase_tx, fdmdv->fbb_rect);
/* --------------------------------------------------------*\
Channel
\*---------------------------------------------------------*/
nin = next_nin;
// nin = M_FAC; // when debugging good idea to uncomment this to "open loop"
/* add M_FAC tx samples to end of buffer */
assert((channel_count + M_FAC) < CHANNEL_BUF_SIZE);
for(i=0; i<M_FAC; i++)
channel[channel_count+i] = tx_fdm[i].real;
channel_count += M_FAC;
/* take nin samples from start of buffer */
for(i=0; i<nin; i++) {
rx_fdm[i].real = channel[i];
rx_fdm[i].imag = 0;
}
/* shift buffer back */
for(i=0,j=nin; j<channel_count; i++,j++)
channel[i] = channel[j];
channel_count -= nin;
/* --------------------------------------------------------*\
Demodulator
\*---------------------------------------------------------*/
/* shift down to complex baseband */
profileTimedEventStart(ProfileTP9);
fdmdv_freq_shift(rx_fdm, rx_fdm, -FDMDV_FCENTRE, &fdmdv->fbb_phase_rx, nin);
profileTimedEventStop(ProfileTP9);
/* freq offset estimation and correction */
// fdmdv->sync = 0; // when debugging good idea to uncomment this to "open loop"
profileTimedEventStart(ProfileTP1);
foff_coarse = rx_est_freq_offset(fdmdv, rx_fdm, nin, !fdmdv->sync);
profileTimedEventStop(ProfileTP1);
if (fdmdv->sync == 0)
fdmdv->foff = foff_coarse;
profileTimedEventStart(ProfileTP2);
fdmdv_freq_shift(rx_fdm_fcorr, rx_fdm, -fdmdv->foff, &fdmdv->foff_phase_rect, nin);
profileTimedEventStop(ProfileTP2);
/* baseband processing */
rxdec_filter(rx_fdm_filter, rx_fdm_fcorr, fdmdv->rxdec_lpf_mem, nin);
profileTimedEventStart(ProfileTP3);
down_convert_and_rx_filter(rx_filt, fdmdv->Nc, rx_fdm_filter, fdmdv->rx_fdm_mem, fdmdv->phase_rx, fdmdv->freq,
fdmdv->freq_pol, nin, M_FAC/Q);
profileTimedEventStop(ProfileTP3);
profileTimedEventStart(ProfileTP4);
rx_timing = rx_est_timing(rx_symbols, FDMDV_NC, rx_filt, fdmdv->rx_filter_mem_timing, env, nin, M_FAC);
profileTimedEventStop(ProfileTP4);
profileTimedEventStart(ProfileTP5);
foff_fine = qpsk_to_bits(rx_bits, &sync_bit, FDMDV_NC, fdmdv->phase_difference, fdmdv->prev_rx_symbols, rx_symbols, 0);
profileTimedEventStop(ProfileTP5);
//for(i=0; i<FDMDV_NC;i++)
// printf("rx_symbols: %f %f prev_rx_symbols: %f %f phase_difference: %f %f\n", rx_symbols[i].real, rx_symbols[i].imag,
// fdmdv->prev_rx_symbols[i].real, fdmdv->prev_rx_symbols[i].imag, fdmdv->phase_difference[i].real, fdmdv->phase_difference[i].imag);
//if (f==1)
// exit(0);
profileTimedEventStart(ProfileTP6);
snr_update(fdmdv->sig_est, fdmdv->noise_est, FDMDV_NC, fdmdv->phase_difference);
profileTimedEventStop(ProfileTP6);
memcpy(fdmdv->prev_rx_symbols, rx_symbols, sizeof(COMP)*(FDMDV_NC+1));
next_nin = M_FAC;
if (rx_timing > 2*M_FAC/P)
next_nin += M_FAC/P;
if (rx_timing < 0)
next_nin -= M_FAC/P;
profileTimedEventStart(ProfileTP7);
fdmdv->sync = freq_state(&reliable_sync_bit, sync_bit, &fdmdv->fest_state, &fdmdv->timer, fdmdv->sync_mem);
profileTimedEventStop(ProfileTP7);
fdmdv->foff -= TRACK_COEFF*foff_fine;
/* --------------------------------------------------------*\
Log each vector
\*---------------------------------------------------------*/
memcpy(&tx_bits_log[FDMDV_BITS_PER_FRAME*f], tx_bits, sizeof(int)*FDMDV_BITS_PER_FRAME);
memcpy(&tx_symbols_log[(FDMDV_NC+1)*f], tx_symbols, sizeof(COMP)*(FDMDV_NC+1));
memcpy(&tx_fdm_log[M_FAC*f], tx_fdm, sizeof(COMP)*M_FAC);
memcpy(&pilot_baseband1_log[f*NPILOTBASEBAND], fdmdv->pilot_baseband1, sizeof(COMP)*NPILOTBASEBAND);
memcpy(&pilot_baseband2_log[f*NPILOTBASEBAND], fdmdv->pilot_baseband2, sizeof(COMP)*NPILOTBASEBAND);
memcpy(&pilot_lpf1_log[f*NPILOTLPF], fdmdv->pilot_lpf1, sizeof(COMP)*NPILOTLPF);
memcpy(&pilot_lpf2_log[f*NPILOTLPF], fdmdv->pilot_lpf2, sizeof(COMP)*NPILOTLPF);
memcpy(&S1_log[f*MPILOTFFT], fdmdv->S1, sizeof(COMP)*MPILOTFFT);
memcpy(&S2_log[f*MPILOTFFT], fdmdv->S2, sizeof(COMP)*MPILOTFFT);
foff_coarse_log[f] = foff_coarse;
foff_log[f] = fdmdv->foff;
/* rx filtering */
for(i=0; i<nin; i++)
rx_fdm_filter_log[rx_fdm_filter_log_index + i] = rx_fdm_filter[i];
rx_fdm_filter_log_index += nin;
for(c=0; c<NC+1; c++) {
for(i=0; i<(P*nin)/M_FAC; i++)
rx_filt_log[c][rx_filt_log_col_index + i] = rx_filt[c][i];
}
rx_filt_log_col_index += (P*nin)/M_FAC;
/* timing estimation */
memcpy(&env_log[NT*P*f], env, sizeof(float)*NT*P);
rx_timing_log[f] = rx_timing;
nin_log[f] = nin;
for(c=0; c<FDMDV_NC+1; c++) {
rx_symbols_log[c][f] = rx_symbols[c];
phase_difference_log[c][f] = fdmdv->phase_difference[c];
}
/* qpsk_to_bits() */
memcpy(&rx_bits_log[FDMDV_BITS_PER_FRAME*f], rx_bits, sizeof(int)*FDMDV_BITS_PER_FRAME);
for(c=0; c<FDMDV_NC+1; c++) {
sig_est_log[c][f] = fdmdv->sig_est[c];
noise_est_log[c][f] = fdmdv->noise_est[c];
}
foff_fine_log[f] = foff_fine;
sync_bit_log[f] = sync_bit;
sync_log[f] = fdmdv->sync;
/*---------------------------------------------------------*\
Dump logs to Octave file for evaluation
by tfdmdv.m Octave script
\*---------------------------------------------------------*/
if (cumulativeOutput == 0 || (currentRun*FRAMES+f) == (FRAMES*FRAMERUNS - 1))
{
int range=cumulativeOutput?FRAMES:1;
int start=cumulativeOutput?0:f;
#if CUMULATIVE
profileEventsTracePrint();
#endif
octave_save_int(fout, "tx_bits_log_c", &tx_bits_log[start * FDMDV_BITS_PER_FRAME], 1, FDMDV_BITS_PER_FRAME*range);
octave_save_complex(fout, "tx_symbols_log_c", &tx_symbols_log[(FDMDV_NC+1)*start], 1, (FDMDV_NC+1)*range, (FDMDV_NC+1)*FRAMES);
octave_save_complex(fout, "tx_fdm_log_c", &tx_fdm_log[M_FAC*start], 1, M_FAC*range, M_FAC*FRAMES);
octave_save_complex(fout, "pilot_lut_c", fdmdv->pilot_lut, 1, NPILOT_LUT, NPILOT_LUT);
octave_save_complex(fout, "pilot_baseband1_log_c", &pilot_baseband1_log[start*NPILOTBASEBAND], 1, NPILOTBASEBAND*range, NPILOTBASEBAND*FRAMES);
octave_save_complex(fout, "pilot_baseband2_log_c", &pilot_baseband2_log[start*NPILOTBASEBAND], 1, NPILOTBASEBAND*range, NPILOTBASEBAND*FRAMES);
octave_save_float(fout, "pilot_coeff_c", pilot_coeff, 1, NPILOTCOEFF, NPILOTCOEFF);
octave_save_complex(fout, "pilot_lpf1_log_c", &pilot_lpf1_log[NPILOTLPF*start], 1, NPILOTLPF*range, NPILOTLPF*FRAMES);
octave_save_complex(fout, "pilot_lpf2_log_c", &pilot_lpf2_log[NPILOTLPF*start], 1, NPILOTLPF*range, NPILOTLPF*FRAMES);
octave_save_complex(fout, "S1_log_c", &S1_log[MPILOTFFT*start], 1, MPILOTFFT*range, MPILOTFFT*FRAMES);
octave_save_complex(fout, "S2_log_c", &S2_log[MPILOTFFT*start], 1, MPILOTFFT*range, MPILOTFFT*FRAMES);
octave_save_float(fout, "foff_log_c", &foff_log[start], 1, range, FRAMES);
octave_save_float(fout, "foff_coarse_log_c", &foff_coarse_log[start], 1, range, FRAMES);
octave_save_complex(fout, "rx_fdm_filter_log_c", &rx_fdm_filter_log[cumulativeOutput?0:rx_fdm_filter_log_index-nin_log[start]], 1, cumulativeOutput?rx_fdm_filter_log_index:nin_log[start], cumulativeOutput?rx_fdm_filter_log_index:nin_log[start]);
int rx_f_l_diff = cumulativeOutput?rx_filt_log_col_index:(P*nin_log[start])/M_FAC;
int rx_f_l_start = rx_filt_log_col_index - rx_f_l_diff;
octave_save_complex(fout, "rx_filt_log_c", &rx_filt_log[0][rx_f_l_start], (FDMDV_NC+1), rx_f_l_diff, (P+1)*FRAMES);
octave_save_float(fout, "env_log_c", &env_log[start*NT*P], 1, NT*P*range, NT*P*FRAMES);
octave_save_float(fout, "rx_timing_log_c", &rx_timing_log[start], 1, range, FRAMES);
octave_save_complex(fout, "rx_symbols_log_c", &rx_symbols_log[0][start], (FDMDV_NC+1), range, FRAMES);
octave_save_complex(fout, "phase_difference_log_c", &phase_difference_log[0][start], (FDMDV_NC+1), range, FRAMES);
octave_save_float(fout, "sig_est_log_c", &sig_est_log[0][start], (FDMDV_NC+1), range, FRAMES);
octave_save_float(fout, "noise_est_log_c", &noise_est_log[0][start], (FDMDV_NC+1), range, FRAMES);
octave_save_int(fout, "rx_bits_log_c", &rx_bits_log[FDMDV_BITS_PER_FRAME*start], 1, FDMDV_BITS_PER_FRAME*range);
octave_save_float(fout, "foff_fine_log_c", &foff_fine_log[start], 1, range , FRAMES);
octave_save_int(fout, "sync_bit_log_c", &sync_bit_log[start], 1, range);
octave_save_int(fout, "sync_log_c", &sync_log[start], 1, range);
octave_save_int(fout, "nin_log_c", &nin_log[start], 1, range);
}
}
return next_nin;
}
int tfdmdv_main(int argc, char* argv[])
{
#ifndef ARM_MATH_CM4
fout = fopen("tfdmdv_out.txt","wt");
assert(fout != NULL);
#endif
#ifdef PROFILE_EVENTS
profileTimedEventInit();
#endif
FPRINTF(fout, "# Created by tfdmdv.c\n");
fdmdv = fdmdv_create(FDMDV_NC);
int i = 0;
int next_nin = M_FAC;
channel_count = 0;
for (i = 0; i < FRAMERUNS; i++)
{
next_nin = run(CUMULATIVE,FRAMEINCR,i,next_nin);
}
#ifndef ARM_MATH_CM4
fclose(fout);
#endif
fdmdv_destroy(fdmdv);
return 0;
}
#ifndef ARM_MATH_CM4
int main(int argc, char* argv[])
{
tfdmdv_main(argc,argv)
}
#endif